
• “3x2” analysis: Combine galaxy density and 
weak lensing auto- and cross-correlations. Can 
also combine with clusters, SNe, strong lensing, 
RSD, CMB lensing, 21cm 

• Why combine? More statistical power, different 
systematics and degeneracies, “self-calibration” 

• Requirements: Modeling of observables and 
systematics, including nonlinear galaxy bias and 
intrinsic alignments (IA); software for predictions 
(CCL), joint covariance (TJPCov), and inference 
pipeline (TJPCosmo)
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Maps and masks
• Maps built on resolution Nside = 4096, then 

masked and downgraded to 2048, the analysis 
resolution 

• Joint mask for areas of insufficient depth, as in 
Jack’s analysis 

• K map is smoothed with Gaussian of FWHM = 
5.4’: required to cut off K noise from small scales 

• ‘Fake catalogues’ also built for clustering 
measurements with treecorr (as this requires 
catalogues instead of maps) 

• Catalog item created at centre of each map 
pixel 

• Weight of each object equal to pixel value 

• Same for masks, from which fake random 
catalogues are created
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Figure 6. Pixel signal-to-noise (S/N) kE/s(kE ) maps (top) and kB/s(kB) maps (bottom) constructed from the METACALIBRATION catalog for galaxies in
the redshift range of 0.2 < z < 1.3, smoothed by a Gaussian filter of sG = 30 arcminutes. s(kE ) and s(kB) are estimated by Eq. (16).

the lower noise coming from the higher number density of source
galaxies. Structures that show up in a given map are likely to also
show up in the neighbouring redshift bins, since the mass that is
contributing to the lensing in one map is likely to also lens galaxies
in neighbouring redshift bins. This is apparent in e.g. the structures
at (RA, Dec)=(35�, -48�) and (58�, -55�). Next, we compare the
E-mode maps with their B-mode counterpart in Fig. 6 and Fig. 7.
In general, the B-mode maps have lower overall amplitudes. The
mean absolute S/N of the E-mode map is ⇠1.5 times larger than
the B-mode map at this smoothing scale. For a smoothing scale of
sG =80 arcminutes, this ratio increases to ⇠ 2. There are no sig-
nificant correlations between the E- and the B-mode maps in Fig. 6
and Fig. 7: we find that the Pearson correlation coefficients10 are all
consistent with zero, as expected for maps where systematic effects
are not dominant. Comparing the four tomographic B-mode maps

10 The Pearson correlation coefficient two maps X and Y is defined as
h(X � X̄)(Y � Ȳ )i/(sX sY ), where X̄ and Ȳ are the mean pixel values for
the two maps, the hi averages over all pixels in the map, and s indicates the
standard deviation of the pixel values in each map.

in Fig. 7, there is no obvious correlation between the structures in
one map with maps of neighboring redshift bins. We find that the
Pearson correlation coefficient between the second and third (third
and fourth) redshift bins for the B-mode maps is 8 (5.5) times lower
than that for the E-mode maps. The E and B-mode maps for the
lowest redshift bin 0.2 < z < 0.43 have similar levels of S/N, which
is expected since the lensing signal at low redshift is weak and the
noise level is high.

We now examine the second and third moments of the kE
maps similar to the tests in Sec. 5.2. For direct comparison with
simulations, the measurements are done using the map with the full
redshift range 0.2 < z < 1.3 and in the region of 0� <RA< 100�.
Our results are shown in the right panels of Fig. 4, where the mean
and standard deviation of the 12 noisy simulation results are also
overlaid.

We note that we do not expect perfect agreement between the
simulation and data for several reasons: first, the detailed shape
noise incorporated in the simulations is only an approximation to
the METACALIBRATION shape noise. In particular, there is no cor-
relation of the shape noise with other galaxy properties in our sim-

MNRAS 000, 000–000 (0000)
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Combining Probes of Dark Energy in LSST 
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ample of such a hypothesis is that dataset ~D can be described
by a model M , in which case the Bayesian evidence is

P ( ~D|H) =

Z
d

N
✓P ( ~D|~✓,M)P (~✓|M) (V.1)

where ~✓ are the N parameters of model M .
For two hypotheses H0 and H1, the Bayes factor is given

by

R =
P ( ~D|H0)

P ( ~D|H1)
=

P (H0| ~D)P (H1)

P (H1| ~D)P (H0)
(V.2)

where the second equality follows from Bayes’ theorem and
clarifies the meaning of the Bayes factor: if we have equal a
priori belief in H0 and H1 (i.e., P (H0) = P (H1)), the Bayes
factor is the ratio of the posterior probability of H0 to the pos-
terior probability of H1. The Bayes factor can be interpreted
in terms of odds, i.e., it implies H0 is favored over H1 with
R : 1 odds (or disfavoured if R < 1). We will adopt the
widely used Jeffreys scale [127] for interpreting Bayes fac-
tors: 3.2 < R < 10 and R > 10 are respectively considered
substantial and strong evidence for H0 over H1. Conversely,
H1 is strongly favored over H0 if R < 0.1, and there is sub-
stantial evidence for H1 if 0.1 < R < 0.31.

We follow [128] by applying this formalism as a test for
consistency between cosmological probes. In this case, the
null hypothesis, H0, is that the two datasets were measured
from the same universe and therefore share the same model
parameters. Two probes would be judged discrepant if they
strongly favour the alternative hypothesis, H1, that they are
measured from two different universes with different model
parameters. So the appropriate Bayes factor for judging con-
sistency of two datasets, D1 and D2, is

R =

P

⇣
~D1,

~D2|M
⌘

P

⇣
~D1|M

⌘
P

⇣
~D2|M

⌘ (V.3)

where M is the model, e.g., ⇤CDM or wCDM. The numerator
is the evidence for both datasets when model M is fit to both
datasets simultaneously. The denominator is the evidence for
both datasets when model M is fit to both datasets individu-
ally, and therefore each dataset determines its own parameter
posteriors.

Before the data were unblinded, we decided that we would
combine results from these two sets of two-point functions if
the Bayes factor defined in Eq. (V.3) did not suggest strong
evidence for inconsistency. According to the Jeffreys scale,
our condition to combine is therefore that R > 0.1 (since
R < 0.1 would imply strong evidence for inconsistency). We
find a Bayes factor of R = 2.8, an indication that DES Y1
cosmic shear and galaxy clustering plus galaxy–galaxy lens-
ing are consistent with one another in the context of ⇤CDM.

The DES Y1 data were thus validated as internally con-
sistent and robust to our assumptions before we gained any
knowledge of the cosmological parameter values that they im-
ply. Any comparisons to external data were, of course, made
after the data were unblinded.

VI. DES Y1 RESULTS: PARAMETER CONSTRAINTS

A. ⇤CDM

We first consider the ⇤CDM model with six cosmological
parameters. The DES data are most sensitive to two cosmo-
logical parameters, ⌦m and S8 as defined in Eq. (IV.5), so for
the most part we focus on constraints on these parameters.
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FIG. 5. ⇤CDM constraints from DES Y1 on ⌦m, �8, and S8

from cosmic shear (green), redMaGiC galaxy clustering plus galaxy–
galaxy lensing (red), and their combination (blue). Here, and in all
such 2D plots below, the two sets of contours depict the 68% and
95% confidence levels.

Given the demonstrated consistency of cosmic shear with
clustering plus galaxy–galaxy lensing in the context of ⇤CDM
as noted above, we proceed to combine the constraints from
all three probes. Figure 5 shows the constraints on ⌦m and
�8 (bottom panel), and on ⌦m and the less degenerate param-
eter S8 (top panel). Constraints from cosmic shear, galaxy
clustering + galaxy–galaxy lensing, and their combination are
shown in these two-dimensional subspaces after marginaliz-
ing over the 24 other parameters. The combined results lead
to constraints

⌦m = 0.264
+0.032
�0.019

S8 = 0.783
+0.021
�0.025

�8 = 0.807
+0.062
�0.041. (VI.1)

The value of ⌦m is slightly lower than that inferred from
either cosmic shear or clustering plus galaxy–galaxy lensing
separately. In general, when projecting down onto a small
subspace, this can occur. In this particular case, we get a
glimpse of why by noting from the bottom panel of Figure 5
that the degeneracy directions of shear differ slightly in the

Learn more: 

• Core Cosmology library: 
github.com/LSSTDESC/CCL 

• Nonlinear IA modeling:            
arXiv:1708.09247 

• Evaluation of nonlinear 
perturbation theory with FAST-PT: 
github.com/JoeMcEwen/FAST-PT

https://github.com/LSSTDESC/CCL
https://github.com/JoeMcEwen/FAST-PT

