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Motivations



Accelerated expansion of the Universe 
- dark energy

- modified gravity

Most of the models involve one or more scalar fields, which experience self-interactions 
and may also interact with matter.

“Fifth force” that has not been seen in local gravity experiments !

- the scalar field does not interact with baryonic matter components

- there is a mechanism to suppress the fifth force in local environments

“Screening” mechanisms associated with non-linearities of the system. 

Khoury (1011.5909)



Two approaches:

- Focus on the cosmological behavior and on low-order (linear) perturbation theory.

One may study specific models or build general frameworks (EFT) that apply to 
a large class of theories.

- Look for explicit models that make sense from local to cosmological scales.

One needs to specify the model and its nonlinear screening mechanism. Combining 
Solar System and cosmological tests can provide strong constraints on the model.

Gravity acts on all scales: it would be nice to have unified scenarios 
(or at least to see how one can build unified models).

The cosmological regime may be decoupled from the small-scale regime.

Gubitosi, Piazza & Vernizzi (JCAP 032, 2013 )



Deviations from Newton’s law are parametrized by

�N = �GNM

r
(1 + 2�2e�r/�)

For long-range forces with large    , the tightest constraint 
on the coupling    comes from the Cassini probe 
measuring the Shapiro effect (time delay):

�2  4⇥ 10�5

�
�

Bertotti et al. (Nature 425, 374, 2003)



Violation of the equivalence principle

A  B

C

⌘BC ⌘
����
aC � aB

aC + aB

����

⌘
Moon�Earth

 10�13

This experiment also constrains the time variation of 
the local Newton’s constant:

����
d lnGN

dt

���� < 10�12 yr�1

It also constrains the anomalous perihelion 
of the Moon: |�✓| < 2⇥ 10�11

Williams et al. (PRL 93, 261101, 2004)

Williams et al. (Class. Quant. Grav. 29, 
184004, 2012)

Will (Liv. Rev. Relat. 17, 4, 2014)
Lunar Laser Ranging 

experiment



Scalar-tensor theories



Coupling matter -- scalar field through the 
Jordan-metric conformal rescaling

The relationship between these two metrics is set by additional degrees of freedom,
such as a scalar field: 

A simple way to modify GR is to introduce 2 metrics: 

- the first metric enters the Einstein-Hilbert action (gravitational part)
- the second metric enters the matter action (dynamical part) 

g̃µ⌫
gµ⌫

gµ⌫ = C(', X)g̃µ⌫ +D(', X)@µ'@⌫' X = �1

2
@µ'@µ'

S =

Z
d

4
x

p
�g̃

M̃

2
Pl

2
R̃+ Sm( (i)

m , gµ⌫) + ...

Simple case of a conformal coupling:

S =

Z
d

4
x

p
�g̃

"
M̃

2
Pl

2
R̃+ L̃'(')

#
+ Sm( (i)

m , gµ⌫) gµ⌫ = A2(') g̃µ⌫

I-  DEFINITIONS

� ⌘ M̃Pl
d lnA

d'

Bekenstein (1993)



II-  GENERAL FEATURES

ds2 = �a2(1 + 2�)d⌧2 + a2(1� 2 )dx2 gµ⌫ = A2g̃µ⌫

� =  ̃N +
�A

A
,  =  ̃N � �A

A

r2 ̃N = 4⇡A2('̄(t))G̃N�⇢mNewton’s constant becomes time dependent:

The gravitational potentials seen by matter receive an additional contribution:

If A, hence GN change too much with time, this can modify BBN and orbits of planets 
and stars (binary pulsars and Lunar Ranging exp. testing Equiv. princ.) 

����
�A

A

����  0.1 since BBN, therefore               in these models. A ' 1

-

- Screening: we wish to suppress the gradients of the scalar field

� 6=  
�+ 

2
6= �

dynamical and lensing 
masses are different



Screening mechanisms



L = �Z('0)

2
(@�')2 � m2('0)

2
(�')2 � �('0)

�'

MPl
�⇢m

Theories with a single nearly massless scalar field on large scales, with second-order 
equations of motion.

Screening mechanisms may be classified in 3 categories:

Write the Lagrangian of the scalar fluctuations up to quadratic order as:

Vainshtein /
K-mouflage Chameleon

Damour-Polyakov

Khoury (1011.5909)

Brax & PV (PRD 90, 
023507, 2014)

We can suppress the gradients of the scalar field (in dense environments) by:

- decreasing the coupling to matter

- increasing the mass of the scalar field

- increasing the inertia of the scalar field 
(prefactor of the kinetic term)

no fifth force

the field is frozen

These 3 mechanisms give rise to different behaviors.



the condition for screening,                ,  
reads as a condition on the 
value of Newton’s potential  

�'

MPl
= � �('0)�⇢m

M2
Pl

�
m2('0) +

k2

a2

�

 =


1 +

2�2('0)

1 +m2('0)a2/k2

�
 N

L = �Z('0)

2
(@�')2 � m2('0)

2
(�')2 � �('0)

�'

MPl
�⇢m

Chameleon and Damour-Polyakov

Z(') = 1
linear order  +  quasi-static approximation

GR is recovered on large (linear) scales, 
outside the Compton radius

Gravity is amplified on smaller scales by 

1 + 2�2

When the linear approximation breaks down: screening

Small-scale linear regime: �'/MPl ' 2� N

|�'| ⇠ |'0|

Vainshtein and K-mouflage mechanisms

�'
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M2
PlZ('0)k2

=
2�

Z
 N

 =


1 +
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Z('0)

�
 N

GR is not recovered on large linear scales

Gravity is amplified by 

1 + 2�2/Z

m = 0

Z(') = 1 + a(')
(@')2

M4
+ b(')L2 ⇤'

MPl
+ . . .

VainshteinK-mouflage

|r2'|
MPl

& L�2

curvature of 
Newton’s potential

|r'| & M2

gradient of 
Newton’s potential  



I-  CHAMELEON SCENARIO

f(R) theories: Sgrav =

Z
d

4
x

p
�g

M

2
Pl

2
f(R) f(R) = RGR:

This is equivalent to a scalar-tensor theory:
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Z
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4
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p
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Rf 0 � f
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Hu & Sawicki (2007)



Because of the conformal coupling, there is an explicit coupling between matter 
and the scalar field. The KG eq. for the scalar field involves the effective potential:

Ve↵(') = V (') + ⇢[A(')� 1]

V (') =
M4+n

'n A(') = e�'/M̃PlTypically:

Chameleon Screening 
Mass/Range of field depends on local density

Chameleon f(R)-gravity
short range

long range

A(�)⇢

A(�)⇢

V (�)

V (�)

Veff (�)

Veff (�)

Hu & Sawicki

Chameleon Screening 
Mass/Range of field depends on local density

Chameleon f(R)-gravity
short range

long range

A(�)⇢

A(�)⇢

V (�)

V (�)

Veff (�)

Veff (�)

Hu & Sawicki

Mota (2016)

The minimum and curvature of the effective potential depend on the environment.

Brax et al. (2012)

Wang et al. (2012)

Khoury & Weltman (2004)



Thin-shell effect:

The effect of the environment

When conformally coupled to matter, scalar fields  have  a matter dependent effective potential

Environment 
dependent 
minimum

The field generated from deep inside is Yukawa 
suppressed. Only a thin shell radiates outside the 
body. Hence suppressed scalar contribution to the 
fifth force.Chameleon

Brax (2016)

In a high-density object like a star, the scalar field becomes short-ranged.
Only the surface of the object where the field has nonzero gradients 
contributes to the fifth force.

Screened and unscreened objects do not 
respond in the same fashion to a distant mass

violation of the 
strong equivalence 

principle

Khoury & Weltman (2004)



II-  DAMOUR-POLYAKOV SCENARIO

A)  Dilaton models Ve↵(') = V (') + ⇢[A(')� 1]

Typically: V (') = V0e
�'/M̃Pl A(') = 1 +

A2

2M̃2
Pl

'2
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long range, large coupling short range, small coupling

� ⌘ M̃Pl
d lnA
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! 0

The coupling depends on the environment.

conformal function 
has a minimum

Damour & Polyakov (1994)



B)  Symmetron models Ve↵(') = V (') + ⇢[A(')� 1]

Typically: V (') = �µ2

2 '2 + �
4'

4 A(') = 1 + 1
2M2'2
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1
2

� ⇢
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large coupling zero coupling

conformal function 
has a minimum

double well

phase transition between low and 
high-density regions

The coupling depends on the environment. Brax et al. (2012)

Hinterbichler & Khoury (2010)



III-  K-MOUFLAGE SCENARIO

S =

Z
d

4
x

p
�g̃

"
M̃

2
Pl

2
R̃+M4

K(�̃)

#
+ Sm( (i)

m , A

2(')g̃µ⌫) �̃ = � 1

2M4
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In the linear regime the deviations from GR are set by: 2�2

K̄ 0

Screening in the non-linear regime: K̄ 0 � 1
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! 1, K 0 ! 1 5th force is negligible

KG:

Brax & V. (2014)

Babichev et al. (2009)



K-mouflage radius: RK =

✓
�M

4⇡M̃PlM2

◆1/2

Inside we recover GR

Outside deviation from GR, gravity is amplified

No thin-shell effect !

RK

RK

d'

dr
K 0

 
� 1

2M4

✓
d')

dr

◆2
!

=
�M(< r)

M̃Pl4⇡r2

Brax & V. (2014)



IV-  VAINSHTEIN SCENARIO

The mechanism is similar to the K-mouflage case, except that it relies on the curvature 
rather than the gradient.

Cubic Galileon model: L(') = �1

2
(@')2 � @2'

2⇤3
(@')2 +

�

M̃Pl

'T

RV =

✓
3�M

4⇡M̃Pl⇤3

◆1/3

We recover GR inside the Vainshtein radius:

Nicolis, Rattazzi, Trincherini (2009)

Deffayet et al. (2011)

Vainshtein (1972)
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V-  COMPARISON

These 3 screening mechanisms appear at different scales and densities 
(different criteria). 

Their effects are different:

- recover GR at large scales (beyond Compton wavelenght) or not

- thin-shell effect or not

- time dependence of Newton’s constant or not

Chameleon:
Damour-Polyakov 

(dilaton/symmetron):

K-mouflage/
Vainshtein:

short range low amplitude

damped within a characteristic radius



OBSERVATIONAL PROBES
AND CONCLUSIONS



scalar. This means that in the perturbative approach which
provides the power spectrum (91), up to one-loop order, we
only include the factor !ðk;"Þ which modifies the linear
matrixO in Eq. (68) and we neglect the new quadratic and
cubic vertices #s

2;11 and #
s
2;111. Next, in the computation of

the spherical collapse which provides the linear density
threshold $LðMÞ, we use the same linearization in $R,
which corresponds to the weak-field expression (108) for
the fifth force. In other words, the ‘‘no-chameleon’’ case
corresponds to using the linear approximation in $% for the
fifth force, i.e. truncating the expansion (52) at n ¼ 1, [but
$% itself is nonlinear, in the sense of the expansion (80)].

The ‘‘with-chameleon’’ case corresponds to keeping the
fully nonlinear constraint equation (3). In the perturbative
approach at one-loop order, this means that we include the
new quadratic and cubic vertices #s

2;11 and #s
2;111, in addi-

tion to the linear kernel !, in the equation of motion (67).
(As noticed in Sec. III C 1, the cubic vertex #s

2;111 can

actually be neglected at this order, but not the quadratic
vertex #s

2;11.) In the spherical-collapse dynamics we solve

the exact nonlinear constraint equation (106).
We can see in Fig. 13 that our approach is able to

reproduce reasonably well the deviations from the
!CDM power spectrum up to k$ 3h Mpc%1. In particu-
lar, it captures both the dependence on fR0

and the impact
of the chameleon mechanism. We do not have simulation
results on small scales, to which we may compare our
predictions, and the agreement may deteriorate at higher
k. Indeed, on small scales the power spectrum is sensitive
to the shape of the halo profiles and their mass-
concentration relation, which are expected to be modified
at some level as compared to !CDM. Then, if these
changes are large enough they cannot be neglected as in

this paper, if one is interested in small scales. On the other
hand, it may be possible to improve our modelization if one
could build a reliable model to predict such modifications
to halo profiles.
As compared with the parametrized post-friedmann ap-

proximation introduced in Ref. [53], which interpolates
between the linear regime, where the modification of grav-
ity is taken into account at the linear level without the
chameleon effect, and the nonlinear regime where one uses
the !CDM prediction, our framework does not introduce
additional interpolation parameters. Moreover, the conver-
gence to general relativity on smaller scales is obtained by
explicitly taking into account the chameleon mechanism
(at one-loop order in the perturbative regime and exactly in
the spherical dynamics used in the one-halo term).
Therefore, the rate of convergence is truly governed by
this nonlinear effect—which depends on the modified
gravity model—rather than by an independent parametri-
zation which requires some tuning (on the coefficient cnl or
the function "2ðkÞ that enter the interpolation [38,53]).
In any case, the comparison with Fig. 3 shows that our

simple approach, which combines one-loop perturbation
theory with the halo model, is already able to go signifi-
cantly beyond the perturbative regime. Indeed, the range of
the agreement with the simulations increases from k$ 0:2
to k$ 3h Mpc%1 at least, as we go from Fig. 3 to Fig. 13.
This is especially important as most of the signal occurs on
the mildly nonlinear scales k$ 1h Mpc%1. Moreover,
smaller, highly nonlinear scales suffer from other sources
of uncertainties, which already appear in the !CDM
case, due to the inaccuracy of the halo profiles and
concentrations, and to the impact of the baryon physics.

B. Scalar-tensor models

We show our results for the deviation from !CDM of
the nonlinear power spectrum for dilaton models at z ¼ 0
in Fig. 14. Although we only have results from simulations
which use the fully nonlinear Klein-Gordon equation (14),
as in Fig. 13 for the fðRÞ theories, we plot both our
‘‘no-screening’’ and ‘‘with-screening’’ predictions.
Again, the ‘‘no-screening’’ result corresponds to truncat-

ing the expansion (52) at n ¼ 1, that is, using the linear
approximation in $% of the fifth force or the linearized
Klein-Gordon equation. This approximation is used for
both the perturbative one-loop power spectrum and the
spherical-collapse threshold $LðMÞ.
The ‘‘with-screening’’ result solves the exact nonlinear

Klein-Gordon equation (113) in the spherical collapse. In
the perturbative part, we consider the results obtained
when we only include the new quadratic vertex #s

2;11 (in

addition to the linear factor !), or both the quadratic
and cubic vertices #s

2;11 and #s
2;111 (higher-order vertices

do not contribute at one-loop order). Indeed, as seen in
Sec. III C 2, in contrast with the case of fðRÞ theories, the
cubic vertex #s

2;111 is not negligible on perturbative scales.
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FIG. 13 (color online). Relative deviation from !CDM of the
power spectrum in fðRÞ theories, at redshift z ¼ 0, for n ¼ 1 and
fR0

¼ %10%4, %10%5, and %10%6. In each case, the triangles

and the squares are the results of the ‘‘no-chameleon’’ and
‘‘with-chameleon’’ simulations from Ref. [25], respectively.
We plot the relative deviation of the nonlinear power spectrum
without the chameleon effect (w.f., dotted lines) and with the
chameleon effect (n.l., solid lines).
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A) Deviations from LCDM on cosmological scales

Cosmological structures may probe the transition to the screening domain.

Deviation of the matter power spectrum 
on cosmological scales, for f(R) models.

cubic

f(z) =
d lnD+

d ln a

✏2 =
d ln Ā

d ln a
⇠ �2�2

K 0
power spectrum

halo mass function

K-mouflage models can reach a 10% deviation in the power spectrum on non-linear scales 
and few percents on linear scales.

The large-mass tail of the halo mass function shows large deviations. This is expected 
as K-mouflage does not screen clusters.

These properties are different from what happens for the Vainshtein mechanism (large clusters are 
screened) and for chameleons such as f(R) (where GR is recovered on large scales).  

Deviation of the halo mass function, 
for K-mouflage models.



B) Deviations from GR on small scales

Screening ensures that the 5th force is much smaller than Newtonian gravity.

However, small deviations can still produce non-negligible effects, 
for instance for the K-mouflage model:

anomalous perihelion of the Moon around the Earth:

|�✓| < 2⇥ 10�11

Williams et al. (Class. Quant. Grav. 29, 
184004, 2012)

�✓ = ⇡r
d

dr


r2

d

dr

⇣ ✏

r

⌘�

✏ =
� lnA

 N

small force that does not behave as 1/r^2 orbit does not close

One obtains:

The only way of satisfying the perihelion bound is to suppress K’’ in the Solar System.

�✓ = �8⇡
�2

K 0
�K 00

K 0 + 2�K 00  2⇥ 10�11 Brax & V. (2015)



C) Speed of gravitational waves

Many more complex models (e.g. galileons) give a speed       for gravitational 
waves that is different from the speed of light    .

cT
c

If               observed cosmic rays should have decayed away into gravitons 
by Cherenkov-like emission.

Detections of optical counterparts to gravitational waves sources would
rule out models that give cT 6= c

cT < c

A multi-messenger event gives: �t ⇠
⇣cT

c
� 1

⌘ d

200Mpc

10

17
seconds

Will (2014)



CONCLUSIONS

Light scalar fields involved in modified-gravity theories must be screened in the Solar System 
to satisfy very tight observational bounds.

There are 3 main mechanisms:
- chameleon
- Damour-Polyakov
- Kmouflage/Vainshtein

They operate in different manners, so that the screening transition appears at different scales 
and densities and behaves in different ways. 

Observational probes can put constraints on these models and distinguish between 
the screening mechanisms.

- formation of cosmological structures (amplification/decrease of gravity)
- impact on velocity fields
- difference between dynamical and lensing mass (look for clusters of galaxies)
- violations of the equivalence principle
- non-universal coupling (baryons - dark matter)

- speed of gravitational waves
- time dependence of Newton’s constant (and of the Hubble expansion rate)
- scalar waves generated by catastrophic events (supernovae) could make screening 
unefficient and be detected ?

Screening does not remove all modifications to gravity:


