

The Dependence of Type Ia Supernova Luminosities on Their Local Environment

Matthieu Roman, Delphine Hardin, Marc Betoule

Standard candles

Colloque Dark Energy - LAL

Type Ia supernovæ

- ✓ Silicium features
- ✓ No helium, no hydrogen
 - Single or double degenerate scenarios
- ✓ Rare: 1 per century per galaxy
- ✓ Short-lived: few months✓ Luminous

Type Ia supernovæ

- ✓ Silicium features
- ✓ No helium, no hydrogen
 - Single or double degenerate scenarios
- ✓ Rare: 1 per century per galaxy
- ✓ Short-lived: few months✓ Luminous
- Flux measurement, calibration, unknown phenomenon, systematics

Colloque Dark Energy - LAL

From SNIa to dark energy

- 12/10/17

- Rolling search
 Matrices of
 CCDs
- SNLS • SDSS

Colloque Dark Energy - LAL

Colloque Dark Energy - LAL

Colloque Dark Energy - LAL

- Joint Light-curve Analysis (JLA)
 Improved calibration
 - accuracy
- 0.15 mag dispersion
- 6% precision on w

Global and local environment

- Stellar mass of the host galaxy
 - 5σ correlation with residuals
 - bimodality
- Local (1 kpc) H_{α}
 - traces stellar formation
 - can explain mass step

₩ +39.24°

+39.38

Rigault et al. (2013)

Supernova Factory ~60 low z SNIa

Demography

an dia set	SNIa	Host photometry	Reference	Filters/Instrument
CSP	19	* 7 **.	SIMBAD	ugriz/SDSS & JHK/2MASS
CfAIII	84	55	SIMBAD	ugriz/SDSS & JHK/2MASS
CfAIV	53	34	SIMBAD	ugriz/SDSS & JHK/2MASS
SDSS	441	389	Sako et al. 2014	ugriz/SDSS
SNLS	397	397	Hardin et al. 2017	$ugriz/{ m MegaCam}$
Total	994	882	_	

Requirement	CSP	CfAIII	CfAIV	SDSS	SNLS	All
Available host stellar mass	7/7	55/55	34/34	389/389	345/397	830/882
$+ \sigma_{\log_{10}\mathcal{M}} < 0.12$	6/7	51/55	31/34	338/389	309/345	735/830
$+ \sigma_{C_{L}} < 0.12$	6/6	49/51	30/31	288/338	293/309	666/735

Local environment at ALL redshifts

Local and global photometry of 882 host galaxies of SNIa at ALL redshifts
3 kpc local radius

• rest-frame U-V colors by interpolating fluxes

Colloque Dark Energy - LAL

Difference between global and local

- On average different than zero
 - changes with redshift
 - mostly comes from intermediate redshifts
- Link with distance to galactic centre
 - locally redder than
 - host: close to centre
 - locally bluer: outskirst

New standardization?

 μ^{model}

- Correlations with Hubble diagram residuals
 - bimodality
- Third standardization parameter
 - magnitude step of $-0.091 \pm 0.013 \text{ mag} (7\sigma)$
 - reduction of the dispersion: 0.14 mag
 impact on dark energy: Δw~1%

Perspectives

ZTF

Multiple surveys
About 10⁴

- SNIa in 10 years
- Increasing analysis techniques – powerful probe of dark energy

Dark Energy Survey

LSST

12/10/17

Colloque Dark Energy - LAL

Subaru - HSC

Backup

Colloque Dark Energy - LAL

New standardization?

Splitting the sample into survey bins redshift bins

이 같은 것이 같은 것이 같이 같은 것이 같은 것이 같은 것이 같이 많이 많다.	영상 사람이 아파이 영상 방법에 많은 것을 가지 않는 것을 것 같아.	유가에는 것이 같은 것을 잘 들었다. 그는 것은 것은 것은 것이 같은 것이 같아요. 것은 것이 없는 것 같아요. 것은 것은 것은 것은 것을 가지 않는 것이 같아요. 것은 것은 것은 것이 없는 것이 없는 것이 없다. 것은 것은 것은 것이 없는 것이 없는 것이 없는 것이 없다. 것은 것은 것은 것이 없는 것이 없는 것이 없는 것이 없다. 것은 것은 것이 없는 것이 없는 것이 없는 것이 없다. 것은 것은 것이 없는 것이 없는 것이 없는 것이 없다. 것은 것은 것이 없는 것이 없는 것이 없는 것이 없다. 것은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없 않이 없는 것이 없 않이 않는 것이 없는 것이 않이	방송 것을 가지 않는 것이 같은 것을 하는 것을 해야 하는 것을 해야 하는 것을 수 있다. 것을 하는 것을 하는 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 것을 것을 것을 것을 것을 것을 것을 수 있는 것을	
	Nb of SNIa	ΔM_B Local color	ΔM_B Host color	ΔM_B Host stellar mass
Nearby	85	$-0.0491 \pm 0.0462 \; (1.1\sigma)$	$-0.0401\pm 0.0454~(0.9\sigma)$	$-0.0235 \pm 0.0430 \ (0.5\sigma)$
SDSS	288	$-0.0877 \pm 0.0189 \; (4.6\sigma)$	$-0.0526 \pm 0.0190 \; (2.8\sigma)$	$-0.0604 \pm 0.0188 \ (3.2\sigma)$
SNLS	293	$-0.0993 \pm 0.0205 \ (4.8\sigma)$	$-0.0917 \pm 0.0202 \; (4.5\sigma)$	$-0.0882 \pm 0.0205 \; (4.3\sigma)$
z < 0.1	123	$-0.0534 \pm 0.0323 \ (1.7\sigma)$	$-0.0119 \pm 0.0313 \; (0.4\sigma)$	$-0.0260 \pm 0.0310 \ (0.8\sigma)$
0.1 < z < 0.5	350	$-0.1172 \pm 0.0171 \ (6.9\sigma)$	$-0.0975 \pm 0.0171 \ (5.7\sigma)$	$-0.0834 \pm 0.0168 \ (5.0\sigma)$
z > 0.5	193	$-0.0586 \pm 0.0259 \ (2.3\sigma)$	$-0.0556 \pm 0.0258 \ (2.2\sigma)$	$-0.0702 \pm 0.0262 \ (2.7\sigma)$
All	666	$-0.0909 \pm 0.0130 \ (7.0\sigma)$	$-0.0689 \pm 0.0130 \ (5.3\sigma)$	$-0.0704 \pm 0.0128 \ (5.5\sigma)$
the second se	A second s second second se Second second s second second sec	THE AREA IN THE REPORT OF A DECIDENT AND A DECIDENT		

Getting more local

Colloque Dark Energy - LAL

Choice of the median

if we correct for the *maximum* local color step: the *maximum* remaining mass step is 3.8σ if we correct for the *maximum* mass step: the *maximum* remaining local color step is 5σ

Why precise photometry?

- Numbers of SNIa within 1σ of the bin limit:
 - 52 for local color
 - 37 for mass
- MC simulation gives 1σ shift for steps:
 - 0.00391 mag for local color
 0.00383 mag for mass

Colloque Dark Energy - LAL

Step significance as a function of local radius

- Transition from local to global between 3 and 32 kpc
- r=2 kpc and r=64 kpc brings significantly less SNIa in the sample
 - sub-seeing radius: large error bars for local colors
 - too large radius:large error bars for local fluxes

