Probing Dark Energy (modified gravity) in the lab

Guillaume Pignol Workshop Dark Energy Orsay Octobre 2017

Testing gravity at short distance

$$V(r) = \frac{GMm}{r} \left(1 + \alpha e^{-r/\lambda}\right)$$
Normal Inverse
square law Hypothetical
extra force

The extra force, of finite range λ , could be mediated by a new scalar particle of mass $\mu = \frac{\hbar c}{\lambda}$

Search for new short range force

$$V_{\text{Yukawa}}(r) = \alpha \frac{GMm}{r} e^{-r/\lambda}$$

Experiments are looking for this force, from subatomic to astrophysical scales

Seattle torsion pendulum experiment

Fifth force searches

Limits valid for unscreened fifth force i.e. mediated by a field governed by a linear equation

$$\Delta \varphi - \mu^2 \varphi = \frac{\alpha \rho}{M_{\rm Pl}}$$

Derived from the Klein-Gordon potential:

$$\mathcal{V}(\varphi) = \frac{\mu^2}{2}\varphi^2 + \alpha \frac{\rho}{M_{\rm Pl}}\varphi$$

The chameleon mechanism

Khoury & Weltman PRD 69 (2004)

Quintessence field coupled with matter:

 $\mathcal{V}(\varphi) = \frac{\Lambda^{4+n}}{\varphi^n} + \beta \frac{\rho}{M_{\rm Pl}} \varphi$ verr(9) **High density** environment, high effective mass Coupling to Anharmonic self-coupling matter Low density environment, low effective mass 5

Understanding the chameleon mechanism

Electric field $\mathrm{d}\varphi/\mathrm{d}x$ proportional to ρ

Understanding the chameleon mechanism

Lab limits on chameleon Dark Energy

Bouncing neutrons: quantum states

Neutrons with energy < 100 neV

can bounce above a glass mirror.

The vertical motion is a simple quantum well problem

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dz^2} + mgz\,\psi = E\,\psi$$

Bouncing neutron: quantum music

qBounce exp. at Institut Laue Langevin Grenoble

G. Cronenberg, H. Filter, Thalhammer, T. Jenke, H. Abele, P. Geltenbort , arXiv:1512.09134 See also Jenke et al. Nature Phys. 7 (2011) 468

GRANIT exp. at ILL (coming soon)

V. Nesvizhevsy, B. Clement, G. Pignol, K. Protasov, D. Rebreyend, F. Vezzu, Y. Xi, S. Baessler, A. Voronin (...)

Limits on chameleon Dark Energy

$$\varphi(z) = \Lambda(\Lambda z/\hbar c)^{2/2+n}$$

Limits on chameleon Dark Energy

Berkeley Cesium interferometry experiment *M. Jaffe et al. arXiv:1612.05171 P. Hamilton et al. Science 349 (2015) 849* Proposed by C. Burrage et al

Symetron Dark Energy

$$\mathcal{V}_{\rm eff}(\varphi) = \left(\frac{\rho}{M^2} - \mu^2\right)\frac{\varphi^2}{2} + \frac{\lambda}{4}\varphi^4$$

Work in progress...

Concluding remarks

- The search for short range modification of gravity is ongoing since decades
- Dark Energy fields evade constraints due to screening properties
- Recently new lab tests were proposed and performed using different systems
 Bouncing neutrons, atom and neutron interferometry, Casimirtype, microspheres...
- More to come: extending chameleon searches, exploring symmetron scenario...

Other possibilities

Fifth force search at the (sub)micrometer scale

Fifth force search at the (sub)nanometer scale

Discovery of the quantum states at ILL Grenoble

Quantum test of the equivalence principle

$$-\frac{\hbar^2}{2m_i}\frac{d^2\psi}{dz^2} + m_g g \ z \ \psi = E \ \psi$$
Inertial Gravitational

Measuring the wavefunctions one access

Mass

Measuring transition frequencies one access

$$z_0 = \left(\frac{\hbar^2}{2m_i m_g g}\right)^{1/3} \qquad E_0 = m_g g z_0 = \left(\frac{m_g^2}{m_i} \frac{g^2 \hbar^2}{2}\right)^{1/3}$$

Mass

One can tell separately the inertial and gravitational mass !

The GRANIT instrument at ILL level C

First UCNs in GRANIT in 2013.

Full potential of the source not reached yet, it is hard.

Neutron optics, cold and ultracold neutrons

Cold neutrons E < kT = 25 meVhave large wavelength $\lambda > 0.2 \text{ nm}$ They behave like waves, affected by the Fermi potential of matter (order of 100 neV)

Neutrons with energy < 100 neV, are reflected by material walls

they can be stored in material bottles.

Principle of neutron interferometry 1

Principle of neutron interferometry 2

Phase shift due to the sample:

$$\xi = -\frac{1}{\nu \hbar} \int V(x) \, dx$$

neutron potential in a chameleon field:

$$V(x) = \beta \frac{m}{M_{\text{Planck}}} \varphi(x)$$

The chameleon cell

Idea:

the chameleon field in a cell exists only in vacuum, it is suppressed by a small amount of gas (here helium)

We plot the transverse field profile $\varphi(y,z)/\Lambda$,

