

NEARBY SUPERNOVA COSMOLOGY

Mickael RIGAULT

LPC Clermont

13th of Octobre 2017

Colloque Dark Energy

Colloque Dark Energy

Mickael RIGAULT

Colloque Dark Energy

Disentangle H₀ from L_{SN}

The Hubble Constant

Planck 2015 — Résultats Cosmologiques

Tension in the concordance model?

Precision Astrophysics

For accurate Cosmology

SN2011fe

Precision Astrophysics

For accurate Cosmology

Rigault et al. 2013, 2015, 2017 & *Roman* et al. 2017: Young progenitors lead to Fainter SNeIa (6σ)

SN2011fe

Physics of the probe

Rigault et al. 2013, 2015

Rigault et al. 2017

non-zero at ~6σ level

Physics of the probe

Confirmed @ high-z

Roman et al. 2017

Impact on Cosmology – H_0

Rigault et al. 2015 | 2015ApJ...802...20R

Impact on Cosmology – Dark Energy

Rigault et al. 2017

Galaxies are more star-forming at higher redshift

Progenitor variabilities strongly bias the measurement of Dark Energy properties

Hubble

from Pierre Antilogus

ZTF | The First New Generation Survey

~800 SNeIa per year in *all* astrophysical conditions nature provides (z<0.1) ZTF @ z-0.05 = LSST @ z-0.5 | Use ZTF to prepare LSST

Nearby Supernova Cosmology | w, H₀ & σ₈

How fast the Structures Grow ? gravity vs. dark energy

Nearby Supernova Cosmology | w, H₀ & σ₈

SNeIa can once again change our understanding of the Universe

Nearby Supernova Cosmology | w, H₀ & σ₈

Probing modified gravity

SNfactory | The Spectrophotometric SN dataset

HST & Optical | Measure the host dust PI: Rigault ; GO14163

70 HST orbits for 70 UV images of host galaxies

Rigault et al. 2013, 2017

Les galaxies forment plus d'étoiles à grand redshift

Évolution astrophysique ou énergie noire exotique?

Rigault et al. 2017

Évolution astrophysique ou énergie noire exotique?

Évolution astrophysique ou énergie noire exotique?

Évolution astrophysique ou énergie noire exotique?

Jones, Riess and Scolnic 2015

They calm to see no environmental effect

They reproduce my result (at 7σ !) using the same SNeIa (from Reiss11) increase the sample and claim not to see anything (0σ)...

