Euclid

Y. Mellier on behalf of the Euclid Consortium

www.euclid-ec.org

Colloque National Dark Energy, LAL, 13 OCT 2017

Euclid

Euclid: **Overview and current status**

Euclid

Euclid Top Level Science Requirements

Sector	Euclid Targets
	• Measure the cosmic expansion history to better than 10% in redshift bins $0.7 < z < 2$.
Dark Energy	• Look for deviations from $w = -1$, indicating a dynamical Dark energy.
	• Euclid <i>alone</i> to give $FoM_{DE} \ge 400$ (1-sigma errors on w_{p} , & w_a of 0.02 and 0.1 respectively)
	• Measure the growth index, γ , with a precision better than 0.02
	• Measure the growth rate to better than 0.05 in redshift bins between 0.5< $z < 2$.
Test Gravity	• Separately constrain the two relativistic potentials. ψ and ϕ
	Test the cosmological principle
	 Detect Dark matter halos on a mass scale between 10⁸ and >10¹⁵ M_{Sun}
Dork Mottor	 Measure the Dark matter mass profiles on cluster and galactic scales
Dark Matter	• Measure the sum of neutrino masses, the number of neutrino species and the neutrino hierarchy with an accuracy of a few hundredths of an eV
	• Measure the matter power spectrum on a large range of scales in order to extract values for the parameters σ_{1} and n to a 1 sigma accuracy of 0.01
Initial	 For extended models, improve constraints on n and n wrt to Planck alone by a factor 2
Conditions	• Tor extended models, improve constraints on <i>n</i> and <i>d</i> wit to relatic alone by a factor 2. • Measure a non Caussianity parameter : f for least type models with an error $< \pm 1/2$.
	• Measure a non-Gaussianity parameter . \int_{NL} for local-type models with an error $< \pm 7-2$.
	• DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p - a)$
	• Growth rate of structure formation: $f \sim \Omega^{\gamma}$;
	• FOIVI=1/($\Delta W_a \times \Delta W_p$) > 400 $\rightarrow \sim$ 1% precision on W's.
	Euclid Collogue National Dark Energy, LAL, 13 OCT 2017 🤒

Cosmological weak lensing

WL probe: Cosmic shear over 0<z<2 :

1.5 billion galaxies shapes, shear and phot-z (u,g,r,i,z, Y,J,H) with 0.05 (1+z) accuracy over 15,000 deg²

GC; BAO, RSD probes: 3-D positions of galaxies over 0.7<z<1.8 :

35 million spectroscopic redshifts with 0.001 (1+z) accuracy over 15,000 deg²

Euclid Survey Machine:15,000 deg² + 40 deg²

Euclid

Euclid Wide+Deep Surveys

Euclid Wide:

- 15000 deg² outside the galactic and ecliptic planes
- 12 billion sources (3-σ)
- 1.5 billion galaxies (30 gal/arcmin²) with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z , (R +I+Z) AB=24.5, 10.0 σ +
 - NIR photom: Y, J, H AB = $24.0, 5.0\sigma$
 - Photo-z with 0.05(1+z) accuracy
- 35 million spectroscopic redshifts of emission line galaxies with
 - R: 260
 - 0.001 z accuracy
 - 21 mag
 - H α galaxies within 0.7 < z < 1.85
 - Flux line: 2 . 10⁻¹⁶ erg.cm⁻².s⁻¹; 3.5σ

Euclid Deep:

- 1x10 deg² North Ecliptic pole (EDF-N) + 1x20 deg² South Ecliptic pole (EDF-S1 + 1x10 deg² at CDFS (EDF-S2)
- 10 million sources (3-σ)
- 1.5 million galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z , (R +I+Z) AB=26.5, 10.0 σ +
 - NIR photom: Y, J, H AB = $26.0, 5.0\sigma$
 - Photo-z with 0.05(1+z) accuracy
- 150 000 spectroscopic redshifts of emission line galaxies with
 - R: 260
 - 0.001 z accuracy
 - 23 mag
 - H α galaxies within 0.7 < z < 1.85
 - Flux line: 5 . 10⁻¹⁷ erg.cm⁻².s⁻¹; 3.5σ

Euclid: exploring the DM-dominated / DE-dominated transition period

Euclid

The ESA Euclid space mission

ESA Euclid mission:

- 2 200 kg
- Dimensions:
- 4,5 m x 3 m
- Launch: end 2020 by a Soyuz rocket from the Kourou space port
- Euclid placed in L2
- Survey: 6 years,

Euclid satellite elements

Euclid Spacecraft Flight Hardware

VIS CDR on going: end Oct 2017

Cropper et al 2016:SPIE

Spectral Band	550 – 900 nm
System Point Spread Function size	\leq 0.18 arcsec full width half maximum at 800 nm
System PSF ellipticity	≤15% using a quadrupole definition
Field of View	$>0.5 \text{ deg}^2$
CCD pixel sampling	0.1 arcsec
Detector cosmetics including cosmic rays	≤3% of bad pixels per exposure
Linearity post calibration	≤0.01%
Distortion post calibration	$\leq 0.005\%$ on a scale of 4 arcmin
Sensitivity	$m_{AB}{\geq}24.5$ at 10σ in 3 exposures for galaxy size 0.3 arcsec
Straylight	≤20% of the Zodiacal light background at Ecliptic Poles
Shear systematic bias allocation	additive $\sigma_{sys} \le 2 \ge 10^{-4}$; multiplicative $\le 2 \ge 10^{-3}$

Control and Data **Processing Unit**

NISP

NISP CDR successful in Nov 2016

Courtesy: T. Maciaszek and the NISP team

- FoV: 0.55 deg²
- Mass : 159 kg
- Telemetry: < 290 Gbt/day
- Size: 1m x 0.5 m x 0.5 m
- 16 2kx2K H2GR detectors
- 0.3 arcsec pixel on sky
- Limiting mag, wide survey AB : 24 (5 σ)
- 3 Filters:
- Y (950-1192nm)
- J (1192, 1544nm)
- H (1544, 2000nm)
- 4 grisms:
- 1B (920 1300) , 1 orientation 0°
- 3R (1250 1850), 3 orientations 0°, 90°, 180°

NISP

Courtesy:: Euclid Consortium NISP team

Grism DM

DM Model OA

NIOMA STM

NIR detectors and VIS CCD's

- Delays in FM detector delivery
- NIR HgCdTe detectors (Teledyne), 2040X2040 pixels, 18x18 μm, 2.3 μm cut-off, FW=130,000 e-:
- QE ≥ 90% 1 µm to 2.2 µm
- Spectroscopic noise ≤ 7 e- over 560 s
- Photometric noise \leq 5 e- over 60 s
- Dark current ≤ 0.005 e-/s/px
- Linearity ≤ 0.7% between 6 ke- and 60 ke-
- CDD FM delivery on going
- CCD (e2v), 4096 x 4132 pixels, 12x12 μm
 FWC=175,000e-
- 4 read-out nodes (in corners)
- SiC package extremely tight flatness
- QE ≥ 70% 500nm to 850nm (95% at 650nm)
- PRNU much better than 2% at all spatial scales
- Noise better than required 3.6 e- at 70 kpix/s

Euclid Survey

- |b|>30°
- Minimise SAA variations;
- Minimise zodiacal light
 → high ecliptic latitude;
- Low galactic extinction;
- Specific pointed calibration;
- Wide survey: one visit/ field
- Deep survey: many visits

2023

2024

2022

2021

2020

Euclid Wide and Deep Surveys

Euclid

Euclid complementary data

- 45 nights at Keck telescope: spectroscopy on Euclid Wide fields north
- 25 nights at VLT VMOS/KMOS: spectroscopy on Euclid Wide fields south
- 2 nights pilot program at GTC: preparation of a spectroscopic large program
- 5300 hrs of Spitzer satellite, period 13, priority 1 on 2 Euclid Deep field (20 deg2)
- DES+KIDS survey data
- 271 nights at CFHT *u-, r-* band data on Euclid Wide North
- 110 nights at JST/T250 g- band data on Euclid Wide North
- Discussions on going with other telescopes

Ground Segment

Complex organisation:

- 10 Organisation Units
- 9 Science Data Centers

Data: huge volumes, heterogeneous data sets

• VIS+NIR imagery, morphometry, photometry , spectroscopy, astrometry, transients

- data ground + space
- ~100 Pbytes
- 1⁺ million images
- > 10¹⁰ sources (>3-σ)

Euclid

Operation Ground Segment

Science Ground Segment

Euclid Flagship Simulation:

a tool for Euclid E2E performances

Euclid

The Euclid Flagship Simulation

- Λ -CDM + Planck 2013 cosmology
- 2 Trillion particles N body simulation down to z=0
- 400 Healpix maps of the projected matter density and potential density
- 100+ redshift slices
- Consistent mocks for WL and GC

Euclid Flagship Simulation: mock galaxy catalog

Euclid

Performances and forecasts

Euclid

Performance Status on Dec 2016

Technical Perform	nance Measure	Requirement	CBE Current				
Image Quality							
	FWHM (@ 800nm)	180 mas	160 mas				
	ellipticity	15.0%	9.4%				
	R2 (@ 800 nm)	0.0576	0.0551				
VIS Channel	ellipticity stability σ(εi)	2.00E-04	1.90E-04				
	R2 stability σ(R2)/ <r2></r2>	1.00E-03	1.00E-04				
	Plate scale	0.10 "	0.100 "				
	rEE50 (@1486nm)	400 mas	225 mas				
NISP Channel	rEE80 (@1486nm)	700 mas	584 mas				
	Plate scale	0.30 "	0.299 "				
Sensitivity							
VIS SNR (for mAE	3 = 24.5 sources)	10	16.99				
NISP-S SNR (@ 1.	6um for 2xe-16 erg cm-2	3.5	4.81				
NISP- P SNR (for	Y-band	5	5.89				
mAB = 24	J-band	5	6.69				
sources)	H-band	5	5.34				
NISP-S Performar	nce						
Purity		80%	72%				
Completeness		45%	52%				
Survey							
Wide Survey Covera	age	15,000 deg2	15,000				
Survey length [year	s]	5.5	5.4				
From E	From ESA PO						

Mission PDR passed in Oct 2015

Euclid performances meet the scientific and survey requirements

- Image quality of the system fully in line with needs.
- Ellipticity, R² stability and Non-convolutive errors performance dictated mainly by ground processing
- *Purity* not compliant with current data processing methods but expected to be recovered with Euclid specific algorithms (not yet installed at this stage).

Mission CDR in MAY 2018

Euclid : VIS imaging instrument

NISP-spectroscopy for Euclid (2015)

From P. Franzetti, B. Garilli, A. Ealet, N. Fourmanoit & J. Zoubian

35 million spectra with at least 3 exposures taken with 3 different orientation.

Cosmology and Fundamental Physics with the Euclid Satellite

Luca Amendola, Stephen Appleby, Anastasios Avgoustidis, David Bacon, Tessa Baker, Marco Baldi, Nicola Bartolo, Alain Blanchard, Camille Bonvin, Stefano Borgani, Enzo Branchini, Clare Burrage, Stefano Camera, Carmelita Carbone, Luciano Casarini, Mark Cropper, Claudia de Rham, Jörg P. Dietrich, Cinzia Di Porto, Ruth Durrer, Anne Ealet, Pedro G. Ferreira, Fabio Finelli, Juan García-Bellido, Tommaso Giannantonio, Luigi Guzzo, Alan Heavens, Lavinia Heisenberg, Catherine Heymans, Henk Hoekstra, Lukas Hollenstein, Rory Holmes, Ole Horst, Zhiqi Hwang, Knud Jahnke, Thomas D. Kitching, Tomi Koivisto, Martin Kunz, Giuseppe La Vacca, Eric Linder, Marisa March, Valerio Marra, Carlos Martins, Elisabetta Majerotto, Dida Markovic, David Marsh, Federico Marulli, Richard Massey, Yannick Mellier, Francesco Montanari, David F. Mota, Nelson J. Nunes, Will Percival, Valeria Pettorino, Cristiano Porciani, Claudia Quercellini, Justin Read, Massimiliano Rinaldi, Domenico Sapone, Ignacy Sawicki, Roberto Scaramella, Constantinos Skordis, Fergus Simpson, Andy Taylor, Shaun Thomas, Roberto Trotta, Licia Verde, Filippo Vernizzi, Adrian Vollmer, Yun Wang, Jochen Weller, Tom Zlosnik (The Euclid Theory Working Group)¹

¹ Please contact euclidtheoryreview@gmail.com for questions and comments.

Abstract

Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the Cosmic Vision 2015–2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky.

Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis.

This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

arXiv:1606.00180

Euclid: combining WL and GC data

Euclid

Exploration of DE models with Euclid (redshifts only)

Clusters of galaxies with Euclid

- Probe of peaks in density distribution
- Nb density of high mass, high redshift clusters very sensitive to
 - primordial non-Gaussianity and
 - deviations from standard DE models
- Euclid data will get for free:
 - Λ -CDM: all clusters with M>2 .10¹⁴ Msol detected at 3- σ up to z=2
 - \rightarrow 60,000 clusters with 0.2<z<2 ,
 - → 1.8 10⁴ clusters at z > 1.
 - ~ 5000 giant gravitational arcs
 - → accurate masses for the whole sample of clusters
 - → Dark matter density profiles on scales >100 kpc

 \rightarrow Synergy with Planck and eROSITA, targets for MSE, 4MOST, MOONS, PFS

Scaling relations with Euclid Clusters

Expected precision on the mean mass of clusters with gravitational shear in bin of $\Delta log(M_{200})=0.2$ and $\Delta z=0.1$

- Survey of 15,000 deg²
- Λ-CDM Planck cosmology
- Tinker mass function
- Shape noise of 0.3

« Euclid has the potential to calibrate the mean mass, and hence the scaling relations, to 1% out to z=1.0 and to 10% out to z=1.6 »

Sartoris et al 2015

Euclid forecast: Primary Program

Ref: Euclid RB arXiv: 1110.3193	Modified Gravity	Dark Matter	Initial Conditions	Ľ	Dark Energy	,
Parameter	γ	m _v /eV	f _{NL}	w _p	w _a	FoM $= 1/(\Delta w_0 \times \Delta w_a)$
Euclid primary (WL+GC)	0.010	0.027	5.5	0.015	0.150	430
EuclidAll (clusters,ISW)	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	6000 →
Current (2009)	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>40	>400

DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p - a)$

From Euclid data alone, get FoM=1/($\Delta w_a \times \Delta w_p$) > 400 $\rightarrow \sim$ 1% precision on w's.

Growth rate of structure formation: $f \sim \Omega^{\gamma}$;

Notice neutrino constraints -> minimal mass possible $\sim 0.05 \text{ eV}$

Euclid

Colloque National Dark Energy, LAL, 13 OCT 2017

Laureijs et al 2011

Euclid forecast: neutrinos and relativistics species

Amendola et al 2	016	General cosmology				
$\mathrm{fiducial} \rightarrow$	$\Sigma = 0.3 \mathrm{eV}^a$	$\Sigma=0.2{\rm eV}^a$	$\Sigma = 0.125 \mathrm{eV}^b$	$\Sigma = 0.125 \mathrm{eV}^{\circ}$	$\Sigma = 0.05 \mathrm{eV}^b$	$N_{\rm eff}=3.04^d$
EUCLID+Planck	0.0361	0.0458	0.0322	0.0466	0.0563	0.0862
			$\Lambda {\rm CDM}$ cosmology			
EUCLID+Planck	0.0176	0.0198	0.0173	0.0218	0.0217	0.0224
					A	

Amendola et al 2016

^{*a*} for degenerate spectrum: $m_1 \approx m_2 \approx m_3$; ^{*b*} for normal hierarchy: $m_3 \neq 0$, $m_1 \approx m_2 \approx 0$ ^{*c*} for inverted hierarchy: $m_1 \approx m_2$, $m_3 \approx 0$; ^{*d*} fiducial cosmology with massless neutrinos

• If Σ >0.1 eV

 \rightarrow Euclid spectroscopic survey will be able to determine the neutrino mass scale <u>independently of the model cosmology assumed</u>.

• If Σ <0.1 eV

 \rightarrow the sum of neutrino masses, and in particular the minimum neutrino mass required by neutrino oscillations, can be measured in the context of the Λ CDM

Euclid: predicted performances from GC

VIS: Simulation of M51

From J. Brinchmann

2.4m SDSS-like @ z=0.1

Euclid @ z=0.1

Euclid @ z=0.7

- Euclid will get the resolution of SDSS but at z=1 instead of z=0.05.
- Euclid will be 3 magnitudes deeper → Euclid Legacy = Super-Sloan Survey

SLACS (~2010 - HST): gravitational lensing by galaxies

CON	i o ortium				STORAGE STORAGE				
0			1		1				1
SDSS J1420+6019	SDSS J2321-0939	SDSS J1106+5228	SDSS J1029+0420	SDSS J1143-0144	SDSS J0955+0101	SDSS J0841+3824	SDSS J0044+0113	SDSS J1432+6317	SDSS J1451-0239
					0				10
5055 30959+0410	SDSS J1032+5322	5055 J1443+0304	SUSS J1218+0830	SDSS J2238-0754	5055 31538+5817	SDSS J1134+6027	SUSS J2303+1422	SDSS J1103+5322	5055 31531-0105
1	0	0		١	07	1	1.	\odot	<u>)</u> .
SDSS J0912+0029	SDSS J1204+0358	SDSS J1153+4612	SDSS J2341+0000	SDSS J1403+0006	SDSS J0936+0913	SDSS J1023+4230	SDSS J0037-0942	SDSS J1402+6321	SDSS J0728+3835
٢	íc,	۲	٢	5	0			No.	1.
SDSS J1627-0053	SDSS J1205+4910	SDSS J1142+1001	SDSS J0946+1006	SDSS J1251-0208	SDSS J0029-0055	SDSS J1636+4707	SDSS J2300+0022	SDSS J1250+0523	SDSS J0959+4416
0	()	1		I		0	6		
SDSS J0956+5100	SDSS J0822+2652	SDSS J1621+3931	SDSS J1630+4520	SDSS J1112+0826	SDSS J0252+0039	SDSS J1020+1122	SDSS J1430+4105	SDSS J1436-0000	SDSS J0109+1500
	6	۲	0		5	۲	١		1. Con
SDSS J1416+5136	SDSS J1100+5329	SDSS J0737+3216	SDSS J0216-0813	SDSS 00935-0003	SDSS J0330-0020	SDSS J1525+3327	SDSS J0903+4116	SDSS J0008-0004	SDSS J0157-0056

SLACS: The Sloan Lens ACS Survey

www.SLACS.org

(UCSB), R. Gavazzi (IAP Paris), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

Euclid

Euclid

Euclid and the next generation wide field VIS/NIR surveys

Objects	Euclid	Before Euclid	From J. Brinchmann 2013				
Galaxies at 1 < z < 3 with precise mass measurement	~2x10 ⁸	~5x10 ⁶	15, 000 deg2				
Massive galaxies (1< z< 3)	Few hundreds	Few tens					
H α Emitters with metal abundance measurements at $z\sim2-3$	~ 4 10 ⁷ ?	~104?					
Galaxies in clusters of galaxies at $z > 1$	~1.8x10⁴	~10 ³ ?	HST in 15 yrs - <20 deg2				
Active Galactic Nuclei galaxies $(0.7 < z < 2)$	~104	<10 ³					
Dwarf galaxies	~10 ⁵		2000 2010 2020				
T _{eff} ~400K Y dwarfs	~few 10 ²	<10	 Targets for JWST, E-ELT, TMT, Subaru, VLT, 4MOST, MSE, etc Synergy with LSST, eROSITA, Subaru/HSC, WEIRST, Planck 				
Lensing galaxies with arcs and rings	~150,000	~10-1000					
Quasars at z > 8	~30	None	SKA				
Euclid		Euclid Co	llogue National Dark Energy, LAL, 13 OCT 2017				

Euclid in the competition

Euclid

Euclid timelyness

Summary

Euclid

Mission Timeline and Data Releases

Euclid Scedule

European Space Agency

Euclid

Summary

- Euclid cosmology core program:
 - Use 5 cosmological probes, with at least 2 independent, and 3 power spectra
 - Perfect complementarity with Planck: probes and data, cosmic periods
 - Explore the Dark universe: DE, DM (neutrinos), MG, inflation, biasing, baryons
 - Explore the transition DM-to-DE-dominated universe period
 - Get the percent precision on *w* and the growth factor *γ*
 - Synergy with New Gen wide field surveys: LSST, WFIRST, e-ROSITA, SKA
- Euclid =12 billion sources, 35 million redshifts, 1.5 billion shapes/photo-z of galaxies;
 - A mine of images and spectra for the community for years;
 - A reservoir of targets for JWST, E-ELT, TMT, ALMA, VLT, MSE, 4MOST, MOONS,
 - A set of astronomical catalogues useful until 2040+
 - Best synery with 4MOST: photo-z, clusteriing-z, clusters, arcs/rings, cool stars
- Big challenges: data processing (100-300 Petabytes), cosmological simulations
- Launch 2020, start 2021: **2500 deg² public in 2023**, 7500 deg² in 2025, final 2027