Universality classes of inflation/dark energy as phases of condensed matter: slow-roll, solids, gaugids etc.

Federico Piazza

Pierre Binétruy

Universality classes of inflation/dark energy as phases of condensed matter: slow-roll, solids, gaugids etc.

Federico Piazza

An order parameter for a specific symmetry breaking pattern!

An order parameter for a specific symmetry breaking pattern!

Quintessential rolling scalar: P(X)

$$\mathcal{L} = P(\partial_{\mu}\phi\partial^{\mu}\phi)$$

An order parameter for a specific symmetry breaking pattern!

Quintessential rolling scalar: P(X) $\mathcal{L} = P(\partial_{\mu}\phi\partial^{\mu}\phi)$ Minkowski space analysis: $\phi = c t$ Lorentz generators: P_i P_0 J_i K_iInternal symmetry:Q

An order parameter for a specific symmetry breaking pattern!

Quintessential rolling scalar: P(X) $\mathcal{L} = P(\partial_{\mu}\phi\partial^{\mu}\phi)$ Minkowski space analysis: $\phi = c t$ Lorentz generators: P_i P_0 J_i Internal symmetry:Q

An order parameter for a specific symmetry breaking pattern!

Condensed matter equivalent: ⁴He superfluid

U(I) broken spontaneously and set at finite charge

Existence and dynamics of the phonons (almost) completely determined by the symmetry breaking pattern

$$\phi = t + \pi(x)$$

$$X = -1 - 2\dot{\pi} - \dot{\pi}^{2} + (\partial_{i}\pi)^{2}$$

$$P(X) = P' \left[-\dot{\pi}^{2} + (\partial_{i}\pi)^{2} \right] + 2P'' \left[\dot{\pi}^{2} + \dot{\pi}^{3} - \dot{\pi}(\partial_{i}\pi)^{2} \right] + \dots$$

relation between speed of sound and cubic term

Condensed matter equivalent: ⁴He superfluid

U(I) broken spontaneously and set at finite charge

Existence and dynamics of the phonons (almost) completely determined by the symmetry breaking pattern

$$\phi = t + \pi(x)$$

$$X = -1 - 2\dot{\pi} - \dot{\pi}^{2} + (\partial_{i}\pi)^{2}$$

$$P(X) = P' \left[-\dot{\pi}^{2} + (\partial_{i}\pi)^{2} \right] + 2P'' \left[\dot{\pi}^{2} + \dot{\pi}^{3} - \dot{\pi}(\partial_{i}\pi)^{2} \right] + \dots$$

relation between speed of sound and cubic term

This is a relativistic Lagrangian where boosts are non-linearly realised!

- $\xi \,\,$ and $\,\gamma_{ij} \,\, {\rm conserved} \,\, {\rm on} \,\, {\rm large} \,\, {\rm scales} \,\, k \ll H$
- $f_{NL} \propto c_s^{-2}$
- $\Delta_{\gamma} \sim \frac{H^2}{M_P^2}$ • $\Delta_s \sim \frac{H^2}{\epsilon c_s M_P^2}$

Boosts spontaneously broken

Unbroken types of translations and rotations

 $\left\{ egin{array}{cc} ar{P}^{\mu} & {
m translations} \ ar{J}^i & {
m rotations} \end{array}
ight.$

 $[\bar{J}_i, \bar{P}_j] = i\epsilon_{ijk} \,\bar{P}_k$ $[\bar{J}_i, \bar{J}_j] = i\epsilon_{ijk} \,\bar{J}_k$

• Boosts spontaneously broken

Unbroken types of translations and rotations

 $\begin{cases} \bar{P}^{\mu} & \text{translations} \\ \bar{J}^{i} & \text{rotations} \end{cases}$

$$\begin{bmatrix} \bar{J}_i, \bar{P}_j \end{bmatrix} = i\epsilon_{ijk} \bar{P}_k$$
$$[\bar{J}_i, \bar{J}_j] = i\epsilon_{ijk} \bar{J}_k$$

Boosts spontaneously broken

Unbroken types of translations and rotations

Boosts spontaneously broken

Unbroken types of translations and rotations

Classifying Condensed Matter

System	Modified generators			# C B	Internal	Extra spacetime
	P_t	P_i	J_i	# G.D.	symmetries	symmetries
1. type-I framid				3		
2. type-I superfluid	\checkmark			1	U(1)	
3. type-I galileid		\checkmark		1		Gal $(3+1,1)^4$
4. type-II framid			\checkmark	6	SO(3)	
5. type-II galileid	\checkmark	\checkmark		1		Gal $(3+1,1)^4$
6. type-II superfluid	\checkmark		\checkmark	4	$SO(3) \times U(1)$	
7. solid		\checkmark	\checkmark	3	ISO(3)	
8. supersolid	\checkmark	\checkmark	\checkmark	4	$ISO(3) \times U(1)$	

Condensed matter

superfluids solids framids

Cosmology/modified gravity

shift-symmetric scalar solid inflation Einstein aether

Lorentz generators: P_i P_0 J_i K_i

Lorentz generators: P_i P_0 J_i

Lorentz generators:

 P_0 R

 J_i

Lorentz generators:

 P_0

R

Lorentz generators:

Internal symmetry:

 Q_i

 P_0

Lorentz generators:

Internal symmetry:

Internal translations

 Q_i

 P_0

Internal rotations

 \tilde{Q}_i

Unbroken combinations

 $\bar{P}_i = P_i + Q_i \qquad \bar{J}_i = J_i + \tilde{Q}_i$

Lorentz generators:

Internal symmetry:

Internal translations

 Q_i

 P_0

Internal rotations

 \tilde{Q}_i

Unbroken combinations

$$\bar{P}_i = P_i + Q_i \qquad \bar{J}_i = J_i + \tilde{Q}_i$$

Order parameter: 3 scalar fields

$$\phi_i \rightarrow R_{ij}\phi_j + c_i$$

Order parameter: 3 scalar fields $\phi_i \rightarrow R_{ij}\phi_j + c_i$

Lagrangian (vs Eulerian) description of a solid: $\phi_i(t, \vec{x})$ are the coordinates of that volume element that is at \vec{x} on the ground state $\langle \phi^i \rangle = x^i$

• $\xi \quad {\rm and} \ \gamma_{ij} \ {\rm conserved} \ {\rm at} \ k \ll H$

• $f_{NL} \propto c_s^{-2}$

$$\cdot \Delta_{\gamma} \sim \frac{H^2}{M_P^2}_{H^2}$$

•
$$\Delta_s \sim \frac{m}{\epsilon c_s M_P^2}$$

• NO!

• $f_{NL} \propto \epsilon^{-1} c_s^{-2}$ $\sim \frac{H^2}{M_P^2} \\ \sim \frac{H^2}{\epsilon c_s^5 M_P^2}$

• $\xi \quad {\rm and} \ \gamma_{ij} \ {\rm conserved} \ {\rm at} \ k \ll H$

• $f_{NL} \propto c_s^{-2}$

•
$$\Delta_{\gamma} \sim \frac{H^2}{M_P^2}$$

 H^2

•
$$\Delta_s \sim \frac{1}{\epsilon c_s M_P^2}$$

Solid Inflation

Endlich, Nicolis, Wang, 2012

• NO!

•
$$f_{NL} \propto \epsilon^{-1} c_s^{-2}$$

$$\cdot \quad \Delta_{\gamma} \sim \frac{H^2}{M_P^2} \\ \cdot \quad \Delta_s \sim \frac{H^2}{\epsilon c_s^5 M_P^2}$$

Gaugid inflation F.P., Pirtskhalava, Rattazzi, Simon, 2017

Same Universality class but with gauged internal translations

- $\xi~~{\rm and}~\gamma_{ij}~~{\rm NOT}~{\rm CONSERVED}$
- $f_{NL} = ?$

•
$$\Delta_{\gamma} \sim \frac{H^2}{\epsilon_E c_E^5 M_P^2}$$

• $\Delta_s \sim \frac{H^2}{\epsilon c_s M_P^2}$

• NO!

• $f_{NL} \propto \epsilon^{-1} c_s^{-2}$

 $\sim \frac{H^2}{M_P^2}$ $\sim -\overline{I}^2$

 $\overline{\epsilon c_s^5 M_D^2}$

Gaugid inflation V.S. F.P., Pirtskhalava, Rattazzi, Simon, 2017 Same Universality class but with gauged internal translations

- $\xi~~{\rm and}~\gamma_{ij}~~{\rm NOT}~{\rm CONSERVED}$
- $f_{NL} = ?$

•
$$\Delta_{\gamma} \sim \frac{H^2}{\epsilon_E c_E^5 M_P^2}$$

• $\Delta_s \sim \frac{H^2}{\epsilon c_s M_P^2}$

Solid Inflation Endlich, Nicolis, Wang, 2012

• NO!

•
$$f_{NL} \propto \epsilon^{-1} c_s^{-2}$$

•
$$\Delta_{\gamma} \sim \frac{H^2}{M_P^2}$$

• $\Delta_s \sim \frac{H^2}{\epsilon c_s^5 M_P^2}$

Gaugid inflation V.S. F.P., Pirtskhalava, Rattazzi, Simon, 2017 Same Universality class but with gauged internal translations

Order parameter: 3 gauge fields A^I_μ

- $\xi~~{\rm and}~\gamma_{ij}~~{\rm NOT}~{\rm CONSERVED}$
- $f_{NL} = ?$
- $\Delta_{\gamma} \sim \frac{H^2}{\epsilon_E c_E^5 M_P^2}$ • $\Delta_s \sim \frac{H^2}{\epsilon c_s M_P^2}$

Solid Inflation Endlich, Nicolis, Wang, 2012

• NO!

•
$$f_{NL} \propto \epsilon^{-1} c_s^{-2}$$

•
$$\Delta_{\gamma} \sim \frac{H^2}{M_P^2}$$

• $\Delta_s \sim \frac{H^2}{\epsilon c_s^5 M_P^2}$

Where have boosts Goldstones gone?

"Inverse Higgs"

The would-be Goldstones of the boosts