Le vide quantique en laboratoire ...par l'électrodynamique non linéaire

Laboratory tests of a quantum vacuum

... by the non linear electrodynamics

Carlo RIZZO

×

LABORATOIRE NATIONAL DES CHAMPS MAGNETIQUES INTENSES - TOULOUSE UNIVERSITE TOULOUSE III Paul Sabatier

What does «vacuum» mean ?

 Aristotle : «The investigation of similar questions about the void, also, must be held to belong to the physicist - namely whether it exists or not, and how it exists or what it is » (Physics, part VI-IX, book IV, ~350 B.C.)

Vacuum energy could be the cause of the universe expansion acceleration !

Dark energy !

A vacuum has macroscopic properties !

Magnetic and electric properties of a quantum vacuum, R. Battesti and C. Rizzo, Rep. Prog. Phys. **76**, 016401 (2013) Limits on nonlinear electrodynamics, M. Fouché, R. Battesti and C. Rizzo, PHYSICAL REVIEW D **93**, 093020 (2016)

In a vacuum, the light travels at c. But, in a medium (like water, glass etc..), its speed is reduced ... and viceversa.

What about light propagating in vacuum in the presence of electromagnetic fields ? More in general, what about interactions between electromagnetic fields ? Non linear electrodynamics : photon-photon interactions

$$\mathcal{F} = \epsilon_0 E^2 - \frac{B^2}{\mu_0},$$

Lorentz invariants

$$\mathcal{G} = \sqrt{\frac{\epsilon_0}{\mu_0}} \mathbf{E} \cdot \mathbf{B},$$

Constutive equations

$$\mathbf{P} = \frac{\partial \mathcal{L}}{\partial \mathbf{E}} - \epsilon_0 \mathbf{E}$$

$$\mathbf{M} = \frac{\partial \mathcal{L}}{\partial \mathbf{B}} - \frac{\mathbf{B}}{\mu_0}$$

 $\mathcal{L} = \sum_{i=0} \sum_{i=0} c_{i,j} \mathcal{F}^i \mathcal{G}^j$

Low field limit

and $\mathcal{L}_{NL} \simeq c_{0,1}\mathcal{G} + c_{2,0}\mathcal{F}^2 + c_{0,2}\mathcal{G}^2 + c_{1,1}\mathcal{F}\mathcal{G}.$

 $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{\rm NL},$

with $\mathcal{L}_0 = \frac{1}{2}\mathcal{F}$,

$$\begin{split} \mathbf{P} &= c_{0,1} \sqrt{\frac{\epsilon_0}{\mu_0}} \mathbf{B} + 4c_{2,0} \epsilon_0 \mathcal{F} \mathbf{E} + 2c_{0,2} \sqrt{\frac{\epsilon_0}{\mu_0}} \mathcal{G} \mathbf{B} \\ &+ c_{1,1} \left(2\epsilon_0 \mathcal{G} \mathbf{E} + \sqrt{\frac{\epsilon_0}{\mu_0}} \mathcal{F} \mathbf{B} \right), \\ \mathbf{M} &= c_{0,1} \sqrt{\frac{\epsilon_0}{\mu_0}} \mathbf{E} - 4c_{2,0} \mathcal{F} \frac{\mathbf{B}}{\mu_0} + 2c_{0,2} \sqrt{\frac{\epsilon_0}{\mu_0}} \mathcal{G} \mathbf{E} \\ &- c_{1,1} \left(2\mathcal{G} \frac{\mathbf{B}}{\mu_0} - \sqrt{\frac{\epsilon_0}{\mu_0}} \mathcal{F} \mathbf{E} \right). \end{split}$$

Light propagating in the presence of light : photon – photon scattering ...

. . .

Light propagating in the presence of an external field : vacuum magnetic linear birefringence

also known as Vacuum Cotton-Mouton effect

A. Heisenberg and Euler effective Lagrangian $2a^2\hbar^3$

$$\mathcal{L}_{\rm NL} = \frac{\alpha}{90\pi} \frac{1}{\epsilon_0 E_{cr}^2} \left[\mathcal{F}^2 + 7\mathcal{G}^2 \right]$$

Based on Dirac's model of a vacuum

$$E_{\rm cr} = 1.3 \times 10^{18} \text{ V/m}$$

 $B_{\rm cr} = E_{\rm cr}/c = m_e^2 c^2/e\hbar = 4.4 \times 10^9 \text{ T}$

$$c_{2,0} = \frac{1}{45m_e^4c^5}$$
$$= \frac{\alpha}{90\pi} \frac{1}{\epsilon_0 E_{\rm cr}^2} = \frac{\alpha}{90\pi} \frac{\mu_0}{B_{\rm cr}^2}$$

1935 - 1936

$$\simeq 1.66 \times 10^{-30} \left[\frac{m^3}{J} \right],$$

$$c_{0,2} = 7c_{2,0},$$

1934

$$c_{2,0} = \frac{1}{8\epsilon_0 E_{abs}^2},$$

$$c_{0,2} = \frac{1}{2\epsilon_0 E_{abs}^2} = 4c_{2,0}.$$

Nowadays

 $\mathcal{L} \simeq \frac{1}{2}\mathcal{F} + \frac{1}{8\epsilon_0 E_{\rm abs}^2}\mathcal{F}^2 + \frac{1}{2\epsilon_0 E_{\rm abs}^2}\mathcal{G}^2$

An attempt to solve the problem of the infinite energy of a charged point particle

B. Born-Infeld effective Lagrangian

C. Lagrangian in the string theory framework

$$\mathcal{L} = \frac{1}{2}\mathcal{F} + \frac{\gamma}{4}[(1-b)\mathcal{F}^2 + 6\mathcal{G}^2]$$

It contains the previous two as a particular case

$$c_{2,0} = \frac{\gamma}{4}(1-b),$$

 $c_{0,2} = \frac{3}{2}\gamma.$

FIG. 1. Born-Infeld prediction and Heisenberg-Euler prediction in the $(c_{2,0}, c_{0,2})$ parameter space. The Born-Infeld prediction is represented by a straight line, while the Heisenberg-Euler one is a point.

Vacuum magnetic linear birefringence Heisenberg – Euler prediction

$$\Delta n = \left(\frac{2\alpha^2\hbar^3}{15m_e^4c^5} + \frac{5}{6}\frac{\alpha^3\hbar^3}{\pi m_e^4c^5}\right)\frac{B_0^2}{\mu_0} = \frac{2\alpha^2\hbar^3}{15m_e^4c^5}\left(1 + \frac{25\alpha}{4\pi}\right)\frac{B_0^2}{\mu_0}$$
$$\Delta n = k_{CM} \ B^2$$

CODATA 2012

$$k_{CM} = (4.0317 \pm 0.0009) \times 10^{-24} \text{ T}^{-2}$$

a very challenging task !

□ Vacuum magnetic linear birefringence

Born - Infeld prediction

$$\Delta n = 0$$

because $c_{0,2} = 4 c_{2,0}!$

BMV group

Permanent staff :

that signed the original proposal

Rémy Battesti Jérôme Béard Julien Billette Mathilde Fouché (INLN Nice) Paul Frings Laurent Pinard (LMA Lyon)

Carlo Rizzo carlo.rizzo@Incmi.cnrs.fr

+

PhD students :

Alice Rivère (2014-2017)

+ 2 years of PostDoc contract thanks to ANR

Michael Hartman (past LIGO member)

Technical staff of LNCMI and LMA (cryogenics, mechanics, electronics, coils, generator, mirror fabrication)

10⁻²⁴ ?!

Same order of magnitude of G.W. dephasing !

Same kind of optical Instrument !

G.W. : separate arm interferometer BMV : polarization interferometer

Faraday configuration : B field parallel to the axis

The real thing !

The cryostat entering in the clean room

Astrophysical evidence !?

Maybe, if you assume the values of the star parameters.

Evidence for vacuum birefringence from the first optical polarimetry measurement of the isolated neutron star RX J1856.5–3754*

R. P. Mignani^{1,2}[†], V. Testa³, D. González Caniulef⁴, R. Taverna⁵, R. Turolla^{5,4}, S. Zane⁴, K. Wu⁴

¹ INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, 20133, Milano, Italy

² Janusz Gil Institute of Astronomy, University of Zielona Góra, Lubuska 2, 65-265, Zielona Góra, Poland

³ INAF - Osservatorio Astronomico di Roma, via Frascati 33, 00040, Monteporzio, Italy

⁴ Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK

⁸ Dipartimento di Fisica e Astronomia, Universitá di Padova, via Marzolo 8, 35131 Padova, Italy

Mignani et al., MNRAS, 465, 492 (2016)

Pour Carlo Rizzo, il s'agit d'une belle association entre physique et astrophysique. «*L'inconvénient des observations astrophysiques et que nous ne maîtrisons pas les conditions comme en laboratoire.* »Il tente donc avec son équipe de détecter cet effet sur Terre à l'aide d'aimants pulsés dont l'intensité atteint quelques dizaines de teslas. Cela permettrait de comparer finement théorie et expérience. Sylvain Guilbaud

The press is getting interested !

24 - La Recherche | Février 2017 - N°520

Looking to all that with a wider approach than Heisenberg – Euler QED :

- Heisenberg-Euler prediction
- Born-Infeld prediction
- Exluded region due to $n_{//}$ and $n_{\perp} > 1$
- Exluded regions with Cotton-Mouton experiments
- Exluded region with Lamb shift measurements

We are in the race !

Measurement (coverage factor k=3)

BMV 2018 ?

We are working hard for that

Le vide quantique en laboratoire ...par l'électrodynamique non linéaire

Laboratory tests of a quantum vacuum

... by the non linear electrodynamics

Carlo RIZZO carlo.rizzo@lncmi.cnrs.fr

LABORATOIRE NATIONAL DES CHAMPS MAGNETIQUES INTENSES - TOULOUSE **UNIVERSITE TOULOUSE III Paul Sabatier**

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

The ATLAS Collaboration

Light by light scattering also observed for the first time ?!

Light-by-light scattering $(\gamma\gamma \rightarrow \gamma\gamma)$ is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead (Pb) ions. Using 480 µb⁻¹ of Pb+Pb collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, the ATLAS Collaboration reports evidence for the $\gamma\gamma \rightarrow \gamma\gamma$ reaction. A total of 13 candidate events are observed with an expected background of 2.6 ± 0.7 events. After background subtraction and analysis corrections, the fiducial cross section of the process Pb+Pb $(\gamma\gamma) \rightarrow Pb^{(*)}+Pb^{(*)}\gamma\gamma$, for photon transverse energy $E_T > 3$ GeV, photon absolute pseudorapidity $|\eta| < 2.4$, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 ± 24 (stat.) ± 17 (syst.) nb, which is in agreement with Standard Model predictions.

In competitions with experiment at high power lasers