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Why trying to modify gravity ? 

•  So far, General Relativity appears compatible with all 
observations: 
–  Laboratory experiments 
–  Solar system measurements 
–  Binary pulsars 
–  Direct observation of GWs (NEW !) 

 

 

 
 

 

 

“Why do you spend so much time and energy testing GR? We 
know that the theory is right.” (Chandrasekhar to C. Will) 
 



Why trying to modify gravity ? 

•  Cosmic acceleration 
–  Cosmological constant seems “unnaturally” tiny 
–  Models of dark energy & modified gravity: Scalar-tensor 

theories, f(R) gravity, massive gravity… 

•  High energy modifications  
–  Beyond classical GR ? 
–  Resolution of the singularities predicted by GR ? 
 

•  Modified gravity also provides benchmark models to test 
General Relativity 
–  Parametrized classes of models 
–  Guide for analysing data 

 

 
 

 

 



How to modify gravity ? 

•  In four dimensions, the only diffeomorphism invariant 
action for the metric leading to at most second order 
equations of motion is the Einstein-Hilbert term plus a 
cosmological constant (Weyl, Cartan, Lovelock). 

 
•  Additional fields (scalar, vector, tensors) 

Scalar-tensor theories, … 
 

•  Higher dimensions 
Braneworlds, e.g. Randall-Sundrum, Dvali-Gabadadze-Porrati 

•  Breaking of diffeomorphism invariance 
–  Lorentz-breaking theories: Einstein-aether, Horava-Lifshitz 
–  Massive gravity 

 

 
 

 

 



Modifying gravity 

In practice, it is rather difficult to modify gravity: 
 
1.  The theory must be internally consistent (e.g. no 

problematic instabilities) 

2.  The theory must look like GR in all regimes where GR 
has been tested 

 Lab tests, Solar system, Binary pulsars, GW from binary BH 

3.  Hopefully (but not necessarily), the theory should 
account for the observed acceleration and exhibit 
some distinctive signatures.   

 
    

 
 

 

 
 

 
 

 

 



•  Simplest extension of GR: add a scalar field  

•  Simplest example: Brans-Dicke theories 

where  is a constant parameter. 

 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 

 

  
 

Scalar-tensor theories 
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•  Perturbed fields: 
 
 
•  Linearized eqs of motion: 

 
 
•  Gravitation: 

 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 

 

  
 

Gravitation in Brans-Dicke theory 
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•  Jordan frame: matter minimally coupled to the metric 

 
•  Conformal transformation: 

 
•  Einstein frame:  

–  Dynamical term for the metric like in GR 
–  Matter non minimally coupled to matter 

 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 
 

  
 

Jordan vs Einstein “frame” 
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•  Einstein frame 

 

•  Effective potential 

–  Scalar field equation: 

–  Hence  

 

 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 

 

  
 

Chameleon mechanism 
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•  Effective mass  

•  Outside the object, the scalar field profile is: 

 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 

 

  
 

Chameleon mechanism 
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•  The effective scalar charge of the object can be 
suppressed by the thin shell effect 

 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 

 

  
 

Chameleon mechanism 

Q = ⇠e↵M ⇠e↵ = ⇠with                     for unscreened objects 

⇠e↵ = 3
�R

R
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•   Modify directly the gravitational action 

 
•  This is equivalent to a scalar-tensor theory 

 
•  In the Einstein frame, coupling to matter  
 

 
•  Chameleon-type screening 

 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 

 

  
 

F(R) theories 
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Screening mechanisms 

•  Deviations from GR on cosmological scales should be 
compatible with small-scale observations (solar system, 
binary systems) 

•  Screening mechanism 

–  Chameleon:      is large   

–  Dilaton & symmetron: 
  
–  Vainshtein:  
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•  Usual scalar-tensor theories : 

•  Generalized theories with second order derivatives 

 
•  In general, they contain an extra degree of freedom, 

expected to lead to Ostrogradsky instabilities 
 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 
 

  
 

Higher order scalar-tensor theories 

L(rµr⌫�, r��, �)

L(r��,�)
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•  Usual theories (Brans-Dicke theories) 

•  Generalized theories:  
 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 
 

  
 

Higher order scalar-tensor theories 

 
 
 
 
 
 
 

 
 
 

 

  
   

  
 

 

  
 

L(rµr⌫�, r��, �)

Horndeski 

Extra DOF 

L(r��,�)

Only one scalar DOF ! 



Horndeski theories 

•  Combination of the following four Lagrangians  
 
 
 
 
 
•  Second order equations of motion for the scalar field 

and the metric 

•  They contain 1 scalar DOF and 2 tensor DOF. 
  No dangerous extra DOF ! 

 
   
 
 

 

  
   

  
 

 

  
 

LH
2 = G2(�, X)

LH
3 = G3(�, X)⇤�

LH
4 = G4(�, X) (4)R� 2G4X(�, X)(⇤�2 � �µ⌫�µ⌫)

LH
5 = G5(�, X) (4)Gµ⌫�

µ⌫ +
1

3
G5X(�, X)(⇤�3 � 3⇤��µ⌫�

µ⌫ + 2�µ⌫�
µ��⌫

�)

with 
�µ⌫ ⌘ r⌫rµ�
X ⌘ rµ�rµ�

Horndeski 74  



•  Usual theories: 

•  Generalized theories:  
 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 
 

  
 

Higher order scalar-tensor theories 

 
 
 
 
 
 
 

 
 
 

 

  
   

  
 

 

  
 

Horndeski 

L(rµr⌫�, r��, �)

Extra DOF 

L(r��,�)



•  Usual theories: 

•  Generalized theories:  
 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 
 

  
 

Higher order scalar-tensor theories 

 
 
 
 
 
 
 

 
 
 

 

  
   

  
 

 

  
 

Horndeski 

Beyond Horndeski 

L(rµr⌫�, r��, �)
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•  Usual theories: 

•  Generalized theories:  
 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 
 

  
 

Higher order scalar-tensor theories 

 
 
 
 
 
 
 

 
 
 

 

  
   

  
 

 

  
 

Horndeski 

Beyond Horndeski DHOST 
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Beyond Horndeski  

•  First hint: disformal transformation of Einstein-Hilbert 

•  Two extensions “beyond Horndeski” 

 
      leading to third order equations of motion. 
 
•  In contrast with earlier belief, no extra DOF if the total 

Lagrangian is “degenerate”. 
 Presence of constraints in the system 
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Degenerate Lagrangians 

•  Scalar-tensor theories: scalar field + metric 
 
•  Simple toy model:  

•  Lagrangian 

 

•  Equations of motion are higher order  
(4th order if a nonzero, 3rd order if a=0) 

   

 

 
 
 

  
 

 

  
 
 
 
 
 
 
 
  
 
 
 
 
  
 
 

 

  
   

  
 

 

  
 

DL & K. Noui  ‘1510  
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Degrees of freedom 

•  Introduce the auxiliary variable 

 
 
•  Equations of motion 

 

•  If the Hessian matrix    
     is invertible,  
    one finds 3 DOF.           
                                              [6 initial conditions] 
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Degrees of freedom 

 
•  If the Hessian matrix    
     is degenerate, i.e.    
 
     then only 2 DOF (at most). 
 
         [      can be absorbed in                      ]  

•  Hamiltonian analysis: primary constraint and secondary 
constraint 
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Higher Order Scalar-Tensor theories 

•  Consider all Lagrangians of the form 

  where            and      depends only on     and         . 

•  Equivalently:           
      
•  Includes Horndeski  and Beyond Horndeski  

•  Full classification: 7 degenerate subclasses 
                                     (4 with            , 3 with            ) 
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Disformal transformations 

•  Transformations of the metric  

   
•  Starting from an action     , one can define the 

new action 
 
 
•  The structure of quadratic DHOST theories is preserved 

under disformal transformations and all 7 subclasses are 
stable. 

 
 

 
 
 
 
  

    
 
 
 

  
 

 
  
 
 
 
 
 
 
 
  
 
 
 
 
  
 
 

 

  
   

  
 

 

  
 

S̃ [�, g̃µ⌫ ]

[Ben Achour, DL & Noui ’1602]  

S[�, gµ⌫ ] ⌘ S̃ [�, g̃µ⌫ = C gµ⌫ +D �µ�⌫ ]

gµ⌫ �! g̃µ⌫ = C(X,�) gµ⌫ +D(X,�) @µ�@⌫�

[Bekenstein  ’93]  



Disformal transformations 

•  Stability under the transformations:  

   
 
 

 

 
 

 
 
 
 
  

    
 
 
 

  
 

 
  
 
 
 
 
 
 
 
  
 
 
 
 
  
 
 

 

  
   

  
 

 

  
 

Horndeski 

Beyond Horndeski 

DHOST 

C(�), D(�)

C(�), D(X,�)

C(X,�), D(X,�)

gµ⌫ �! g̃µ⌫ = C gµ⌫ +D @µ�@⌫�



Cubic DHOST theories 

•  Action of the form  

depends on eleven functions:  

•  This includes  the Lagrangians            and         .  

•   9 degenerate subclasses: 2 with              ,  7  with               
 
•  25 combinations of quadratic and cubic theories (out 

of 7x9) are degenerate. 
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Cosmology: 
 Effective description of Dark 

Energy & Modified Gravity 



Parametrized  
Effective  

Description 
  

Observational  
constraints  

Theories  



Effective description of Dark Energy 

•  Restriction: single scalar field models 

•  The scalar field defines a preferred slicing 
 Constant time hypersurfaces = uniform field hypersurfaces 

 
 

 
•  All perturbations embodied by the metric only 

� = �1

� = �2

� = �3

[ See e.g review:  Gleyzes, DL & Vernizzi 1411.3712 ] 



Uniform scalar field slicing 

•  3+1 decomposition based on this preferred slicing 
 
•  Basic ingredients 

–  Unit vector normal to the hypersurfaces 

 

–  Projection on the hypersurfaces: 
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ADM formulation 

•  ADM decomposition of spacetime 
 

 
 

  

 

•  Generic Lagrangians of the form  
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Homogeneous background  
& linear perturbations  

•  Background 

•  Perturbations: 

•  Expanding the Lagrangian         with 
 

 yields 
 
•  The quadratic action describes the dynamics of linear 

perturbations 
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L̄(a, ȧ, N̄) ⌘ L


Ki

j =
ȧ

N̄a
�ij , R

i
j = 0, N = N̄(t)

�
ds

2 = �N̄

2(t) dt2 + a

2(t) �ijdx
i
dx

j

�N ⌘ N � N̄ , �Ki
j ⌘ Ki

j �H�ij , �Ri
j ⌘ Rj

i



Linear perturbations  
•  Quadratic action  
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Scalar degree of freedom  

•  Scalar perturbations: 

•  Quadratic action for the physical degree of freedom: 

 
•  Stability  

–  No ghost: 

–  No gradient instability:  
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Tensor degrees of freedom  

•  Quadratic action for the tensor modes: 

 
•  Stability  

–  No ghost:  

–  No gradient instability:  
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Extension to DHOST theories  

 
•  Quadratic action in terms of 9 functions of time 

 

 
•  Degeneracy conditions: 2 possible sets 
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Confrontation with observations 

•  Use a traditional gauge, e.g. Newtonian gauge 

•  Description in an arbitrary slicing ?  
  

 

 
•  Coordinate change 

•  Perturbations:            
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Cosmological perturbations 

•  Standard equations (in GR) 
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Cosmological perturbations 

•  Modified equations 
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which can be confronted to observations (galaxy clustering, weak lensing…) 

[Bellini et al ’15, Peronon et al. 15, Gleyzes et al 15, D’Amico et al 16, Alonso et al 16, …]   



Neutron stars  
in Modified Gravity 



Stars in beyond Horndeski theories 

 
•  Partial breaking of Vainshtein mechanism inside matter        
 
•  Spherical symmetry & nonrelativistic limit: 

•  Modified Lane-Emden equation  
 (for                      ) 

–  Universal bound 
–  Astrophysical constraints  on  
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Neutron stars in beyond Horndeski  

 
•  Model       
 

 

•  Cosmological solution: de Sitter with   
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Neutron stars in beyond Horndeski 

 
•  Spherical symmetric solutions  
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•  External solution: Schwarzschild-de Sitter     
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Neutron stars in beyond Horndeski 

•  Internal solution 
    System analog to TOV equations 

 
•  Mass-radius relations 

For               the maximum mass is larger than in GR.  

 
 
 
 

•  See also   
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Conclusions 
•  Modified gravity is a very active field of research, mainly 

motivated by 
–  Cosmic acceleration 
–  Testing GR 

•  Recent developments in the construction of scalar-tensor 
theories, in particular with the classification of DHOST 
theories, which contain a single scalar dof. 

 
•  Most existing scalar-tensor theories of modified gravity 

can be tested in cosmology, by using the effective 
description of dark energy and modified gravity.  

•  Modified gravity theories must also be tested in compact 
objects. 

 

  

 

 

 


