## Dark Energy & Modified Gravity: a theoretical perspective

David Langlois (APC, Paris)



Astroparticules et Cosmologie

## Why trying to modify gravity ?

- So far, **General Relativity** appears compatible with all observations:
  - Laboratory experiments
  - Solar system measurements
  - Binary pulsars
  - Direct observation of GWs (NEW !)

"Why do you spend so much time and energy testing GR? We know that the theory is right." (Chandrasekhar to C. Will)

# Why trying to modify gravity ?

#### Cosmic acceleration

- Cosmological constant seems "unnaturally" tiny
- Models of dark energy & modified gravity: Scalar-tensor theories, f(R) gravity, massive gravity...

#### High energy modifications

- Beyond classical GR ?
- Resolution of the singularities predicted by GR ?
- Modified gravity also provides benchmark models to test General Relativity
  - Parametrized classes of models
  - Guide for analysing data

## How to modify gravity ?

- In four dimensions, the only diffeomorphism invariant action for the metric leading to at most second order equations of motion is the Einstein-Hilbert term plus a cosmological constant (Weyl, Cartan, Lovelock).
- Additional fields (scalar, vector, tensors) Scalar-tensor theories, ...

#### Higher dimensions

Braneworlds, e.g. Randall-Sundrum, Dvali-Gabadadze-Porrati

#### Breaking of diffeomorphism invariance

- Lorentz-breaking theories: Einstein-aether, Horava-Lifshitz
- Massive gravity

# Modifying gravity

In practice, it is rather difficult to modify gravity:

- 1. The theory must be **internally consistent** (e.g. no problematic instabilities)
- The theory must look like GR in all regimes where GR has been tested
   Lab tests, Solar system, Binary pulsars, GW from binary BH
- 3. Hopefully (but not necessarily), the theory should **account for the observed acceleration** and exhibit some **distinctive signatures**.

#### **Scalar-tensor theories**

• Simplest extension of GR: add a scalar field

$$S = \frac{M_P^2}{2} \int d^4x \sqrt{-g} \left[ F(\phi)R - Z(\phi)g^{\mu\nu}\partial_\mu\phi\partial_\nu\phi - U(\phi) \right] + S_m \left[\psi_m, g_{\mu\nu}\right]$$

• Simplest example: Brans-Dicke theories

$$S = \frac{M_P^2}{2} \int d^4x \sqrt{-g} \left[ \phi R - \frac{\omega_{\rm BD}}{\phi} (\partial \phi)^2 \right] + S_m \left[ \psi_m, g_{\mu\nu} \right]$$

where  $\omega_{BD}$  is a constant parameter.

#### **Gravitation in Brans-Dicke theory**

• Perturbed fields:  $\phi = 1 + \delta \phi$ 

 $ds^{2} = -(1+2\Phi)dt^{2} + (1-2\Psi)\delta_{ij}dx^{i}dx^{j}$ 

• Linearized eqs of motion:  $(3 + 2\omega_{BD})\nabla^2 \delta \phi = -8\pi G\rho$ 

$$\nabla^2 \Psi = 4\pi G \rho + \frac{1}{2} \nabla^2 \delta \phi , \qquad \Psi - \Phi = \delta \phi$$

• Gravitation:  $\nabla^2 \Phi = 4\pi G \,\mu \,\rho$ ,  $\Psi = \eta \,\Phi$  $\mu = \frac{4 + 2\omega_{\rm BD}}{3 + 2\omega_{\rm BD}}, \qquad \eta = \frac{1 + \omega_{\rm BD}}{2 + \omega_{\rm BD}}$ 

GR limit:  $\omega_{BD} \rightarrow \infty$  Constraint:  $\omega_{BD} > 4 \times 10^4$ 

### Jordan vs Einstein "frame"

• Jordan frame: matter minimally coupled to the metric

 $S = \frac{M_P^2}{2} \int d^4x \sqrt{-g} \left[ F(\phi)R - Z(\phi)g^{\mu\nu}\partial_\mu\phi\partial_\nu\phi - U(\phi) \right] + S_m \left[\psi_m, g_{\mu\nu}\right]$ 

- Conformal transformation:  $g_{ab}^* = \Omega^2 g_{ab}$  $\int d^4 x \sqrt{-g_*} R_* = \int d^4 x \sqrt{-g} \left[ \Omega^2 R + 6 \nabla^a \Omega \nabla_a \Omega \right]$
- Einstein frame:
  - Dynamical term for the metric like in GR
  - Matter non minimally coupled to matter

$$S = \int d^4x \sqrt{-g_*} \left[ \frac{M_P^2}{2} R_* - \frac{1}{2} g_*^{\mu\nu} \partial_\mu \phi_* \partial_\nu \phi_* - V(\phi_*) \right] + S_m \left[ \psi_m, A^2(\phi_*) g_{\mu\nu}^* \right]$$
$$\xi = M_P^{-1} \frac{A_{\phi_*}}{A} \qquad \left[ BD : \xi^2 = 1/(4\omega_{\rm BD} + 6) \right]$$

## **Chameleon mechanism**

[Khoury, Weltman 2003]

Einstein frame

$$S = \int d^4x \sqrt{-g} \left[ \frac{M_P^2}{2} R - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \,\partial_\nu \phi - V(\phi) \right] + S_m \left[ \psi_m, \tilde{g}_{\mu\nu} = A^2(\phi) g_{\mu\nu} \right]$$

Effective potential

- Scalar field equation: 
$$abla^\mu 
abla_\mu \phi = rac{dV}{d\phi} + rac{A_\phi}{A} 
ho$$

– Hence 
$$V_{\rm eff} = V(\phi) + [A(\phi)-1]\hat{\rho} \simeq V(\phi) + \xi \frac{\phi}{M_p}\hat{\rho}$$

#### **Chameleon mechanism**



- Effective mass  $m_{
  m eff}^2 \propto 
  ho^{rac{n+2}{n+1}}$
- Outside the object, the scalar field profile is:

$$\phi = -\frac{Q}{M_P} \frac{e^{-m_{\infty}r}}{4\pi r} + \phi_{\infty} \qquad \qquad Q = \xi_{\text{eff}} M$$

#### **Chameleon mechanism**



• The effective scalar charge of the object can be suppressed by the thin shell effect

$$Q = \xi_{
m eff} M$$
 with  $\xi_{
m eff} = \xi$  for unscreened objects  
 $\xi_{
m eff} = 3 \frac{\Delta R}{R} \xi \ll \xi$  for screened objects

## F(R) theories

[see e.g.review Sotiriou & Faraoni '10]

- Modify directly the gravitational action  $S = \frac{M_P^2}{2} \int d^4x \sqrt{-g} F(R) + S_{\text{matter}}[\psi_m, g_{\mu\nu}]$
- This is equivalent to a scalar-tensor theory

$$S = \frac{M_p^2}{2} \int d^4x \sqrt{-g} \left[ F(\sigma) + (R - \sigma) F'(\sigma) \right]$$

• In the Einstein frame, coupling to matter

$$A(\phi) = \exp\left(-\frac{1}{\sqrt{6}}\frac{\phi}{M_P}\right) \qquad \qquad \xi = -\frac{1}{\sqrt{6}}$$

Chameleon-type screening

## **Screening mechanisms**

- Deviations from GR on cosmological scales should be compatible with small-scale observations (solar system, binary systems)
- Screening mechanism

$$Z(\phi_0) \nabla^2 \delta \phi - m^2(\phi_0) \delta \phi = -\beta(\phi_0) \frac{\delta T}{M_P}$$

- Chameleon:  $m(\phi_0)$  is large
- Dilaton & symmetron:  $\beta(\phi_0) \ll 1$
- Vainshtein:  $Z(\phi_0) \gg \beta^2(\phi_0)$

- Usual scalar-tensor theories :  $\mathcal{L}(\nabla_{\lambda}\phi,\phi)$
- Generalized theories with second order derivatives

 $\mathcal{L}(
abla _{\mu } 
abla _{
u } \phi, \, 
abla _{\lambda } \phi, \, \phi)$ 

• In general, they contain an **extra degree of freedom**, expected to lead to **Ostrogradsky instabilities** 

 $L(\ddot{q},\dot{q},q)$ 

- Usual theories (Brans-Dicke theories)  $\mathcal{L}(\nabla_{\lambda}\phi,\phi)$
- Generalized theories:  $\mathcal{L}(\nabla_{\mu}\nabla_{\nu}\phi, \nabla_{\lambda}\phi, \phi)$



## Horndeski theories

Horndeski 74

Combination of the following four Lagrangians

$$\begin{split} L_2^H &= G_2(\phi, X) \\ L_3^H &= G_3(\phi, X) \Box \phi \\ L_4^H &= G_4(\phi, X) {}^{(4)}\!R - 2G_{4X}(\phi, X) (\Box \phi^2 - \phi^{\mu\nu}\phi_{\mu\nu}) \\ L_5^H &= G_5(\phi, X) {}^{(4)}\!G_{\mu\nu}\phi^{\mu\nu} + \frac{1}{3}G_{5X}(\phi, X) (\Box \phi^3 - 3\,\Box\phi\,\phi_{\mu\nu}\phi^{\mu\nu} + 2\,\phi_{\mu\nu}\phi^{\mu\sigma}\phi^{\nu}{}_{\sigma}) \end{split}$$

- Second order equations of motion for the scalar field and the metric
- They contain 1 scalar DOF and 2 tensor DOF.
   No dangerous extra DOF !

- Usual theories:  $\mathcal{L}(\nabla_{\lambda}\phi,\phi)$
- Generalized theories:  $\mathcal{L}(\nabla_{\mu}\nabla_{\nu}\phi, \nabla_{\lambda}\phi, \phi)$



- Usual theories:  $\mathcal{L}(\nabla_{\lambda}\phi,\phi)$
- Generalized theories:  $\mathcal{L}(\nabla_{\mu}\nabla_{\nu}\phi, \nabla_{\lambda}\phi, \phi)$



- Usual theories:  $\mathcal{L}(\nabla_{\lambda}\phi,\phi)$
- Generalized theories:  $\mathcal{L}(\nabla_{\mu}\nabla_{\nu}\phi, \nabla_{\lambda}\phi, \phi)$



## **Beyond Horndeski**

- First hint: disformal transformation of Einstein-Hilbert
   Zumalacarregui & Garcia-Bellido '13
- Two extensions "beyond Horndeski" [Gleyzes, DL, Piazza  $L_4^{\text{bH}} \equiv F_4(\phi, X) \, \epsilon^{\mu\nu\rho}{}_{\sigma} \, \epsilon^{\mu'\nu'\rho'\sigma} \phi_{\mu}\phi_{\mu'}\phi_{\nu\nu'}\phi_{\rho\rho'}$   $L_5^{\text{bH}} \equiv F_5(\phi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \phi_{\mu}\phi_{\mu'}\phi_{\nu\nu'}\phi_{\rho\rho'}\phi_{\sigma\sigma'}$

leading to third order equations of motion.

 In contrast with earlier belief, no extra DOF if the total Lagrangian is "degenerate".

Presence of constraints in the system

## Degenerate Lagrangians DL & K. Noui '1510

- Scalar-tensor theories: scalar field + metric
- Simple toy model:  $\phi(x^{\lambda}) \to \phi(t)$ ,  $g_{\mu\nu}(x^{\lambda}) \to q(t)$
- Lagrangian

$$L = \frac{1}{2}a\,\ddot{\phi}^2 + b\,\ddot{\phi}\,\dot{q} + \frac{1}{2}c\,\dot{q}^2 + \frac{1}{2}\dot{\phi}^2 - V(\phi,q)$$

• Equations of motion are higher order (4th order if a nonzero, 3rd order if a=0)

## **Degrees of freedom**

• Introduce the auxiliary variable  $Q \equiv \dot{\phi}$ 

$$L = \frac{1}{2}a\,\dot{Q}^2 + b\,\dot{Q}\dot{q} + \frac{1}{2}c\,\dot{q}^2 + \frac{1}{2}Q^2 - V(\phi,q) - \lambda(Q - \dot{\phi})$$

• Equations of motion

 $a \ddot{Q} + b \ddot{q} = Q - \lambda \qquad \qquad \dot{\phi} = Q, \quad \dot{\lambda} = -V_{\phi}$  $b \ddot{Q} + c \ddot{q} = -V_{q}$ 

 If the Hessian matrix is invertible, one finds 3 DOF.

$$M \equiv \left(\frac{\partial^2 L}{\partial v^a \partial v^b}\right) = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right)$$

[6 initial conditions]

## **Degrees of freedom**

 $M \equiv \left(\frac{\partial^2 L}{\partial v^a \partial v^b}\right) = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right)$ 

• If the Hessian matrix is degenerate, i.e.

$$ac - b^2 = 0$$

then only 2 DOF (at most).

$$[\ddot{\phi} \text{ can be absorbed in } \dot{x} \equiv \dot{q} + \frac{b}{c}\ddot{\phi}]$$

Hamiltonian analysis: primary constraint and secondary constraint

$$[ p_a = \frac{\partial L}{\partial v^a}(v) \quad \text{cannot be inverted } ]$$

Consider all Lagrangians of the form
 [DL & Noui '1510]

 $S[g,\phi] = \int d^4x \sqrt{-g} \left[ f_2{}^{(4)}R + C^{\mu\nu\rho\sigma}_{(2)} \nabla_{\mu}\nabla_{\nu}\phi \nabla_{\rho}\nabla_{\sigma}\phi \right]$ where  $f_2 = f_2(X,\phi)$  and  $C^{\mu\nu\rho\sigma}_{(2)}$  depends only on  $\phi$  and  $\nabla_{\mu}\phi$ .

- Equivalently:  $C_{(2)}^{\mu\nu\rho\sigma}\phi_{\mu\nu}\phi_{\rho\sigma} = \sum_{i=1}^{3} a_i(X,\phi) L_i^{(2)}$
- Includes Horndeski  $L_4^{
  m H}$  and Beyond Horndeski  $L_4^{
  m bH}$
- Full classification: 7 degenerate subclasses (4 with  $f_2 \neq 0$ , 3 with  $f_2 = 0$ )

[See also Crisostomi et al '1602; Ben Achour, DL & Noui '1602; de Rham & Matas '1604]

## **Disformal transformations**

- Transformations of the metric [Bekenstein '93]  $g_{\mu\nu} \longrightarrow \tilde{g}_{\mu\nu} = C(X,\phi) g_{\mu\nu} + D(X,\phi) \partial_{\mu}\phi \partial_{\nu}\phi$
- Starting from an action  $\tilde{S}[\phi, \tilde{g}_{\mu\nu}]$ , one can define the new action  $S[\phi, g_{\mu\nu}] \equiv \tilde{S}[\phi, \tilde{g}_{\mu\nu} = C g_{\mu\nu} + D \phi_{\mu}\phi_{\nu}]$
- The structure of quadratic DHOST theories is preserved under disformal transformations and all 7 subclasses are stable.

[Ben Achour, DL & Noui '1602]

### **Disformal transformations**

• Stability under the transformations:



## **Cubic DHOST theories**

[Ben Achour, Crisostomi, Koyama, DL, Noui & Tasinato '1608]

• Action of the form

$$S[g,\phi] = \int d^4x \sqrt{-g} \left[ f_3 \, G^{\mu\nu} \phi_{\mu\nu} + C^{\mu\nu\rho\sigma\alpha\beta}_{(3)} \phi_{\mu\nu} \, \phi_{\rho\sigma} \, \phi_{\alpha\beta} \right]$$
  
depends on eleven functions:  $C^{\mu\nu\rho\sigma\alpha\beta}_{(3)} \phi_{\mu\nu} \, \phi_{\rho\sigma} \, \phi_{\alpha\beta} = \sum_{i=1}^{10} b_i(X,\phi) \, L_i^{(3)}$ 

- This includes the Lagrangians  $L_5^{
  m H}$  and  $L_5^{
  m bH}$ .
- 9 degenerate subclasses: 2 with  $f_3 \neq 0$  , 7 with  $f_3 = 0$
- 25 combinations of quadratic and cubic theories (out of 7x9) are degenerate.

Cosmology: Effective description of Dark Energy & Modified Gravity



## **Effective description of Dark Energy**

[See e.g review: Gleyzes, DL & Vernizzi 1411.3712]

- Restriction: single scalar field models
- The scalar field defines a preferred slicing
   Constant time hypersurfaces = uniform field hypersurfaces



• All perturbations embodied by the metric only

## **Uniform scalar field slicing**

- 3+1 decomposition based on this preferred slicing
- Basic ingredients
  - Unit vector normal to the hypersurfaces



- **Projection** on the hypersurfaces:  $h_{\mu\nu} = g_{\mu\nu} + n_{\mu} n_{\nu}$ 

## **ADM formulation**

ADM decomposition of spacetime



Generic Lagrangians of the form

$$S_g = \int d^4x \, N\sqrt{h} \, L(N, K_{ij}, R_{ij}; t)$$

## Homogeneous background & linear perturbations

• Background  $ds^2 = -\bar{N}^2(t) dt^2 + a^2(t) \delta_{ij} dx^i dx^j$ 

$$\bar{L}(a, \dot{a}, \bar{N}) \equiv L\left[K_j^i = \frac{\dot{a}}{\bar{N}a}\,\delta_j^i, R_j^i = 0, N = \bar{N}(t)\right]$$

- Perturbations:  $\delta N \equiv N \bar{N}, \ \delta K_j^i \equiv K_j^i H \delta_j^i, \ \delta R_j^i \equiv R_i^j$
- Expanding the Lagrangian  $L(q_A)$  with  $q_A \equiv \{N, K_j^i, R_j^i\}$

yields 
$$L(q_A) = \overline{L} + \frac{\partial L}{\partial q_A} \delta q^A + \frac{1}{2} \frac{\partial^2 L}{\partial q_A \partial q_B} \delta q_A \delta q_B + \dots$$

 The quadratic action describes the dynamics of linear perturbations

## **Linear perturbations**

Quadratic action

Gleyzes, DL, Piazza & Vernizzi '13, [notation: Bellini & Sawicki '14]

$$S^{(2)} = \int dx^3 dt \, a^3 \, \frac{M^2}{2} \left[ \delta K^i_j \delta K^j_i - \delta K^2 + \alpha_K H^2 \delta N^2 + 4 \, \alpha_B H \, \delta K \, \delta N \right]$$
$$\alpha_M \equiv \frac{d \ln M^2}{H \, dt} + (1 + \alpha_T) \delta_2 \left( \frac{\sqrt{h}}{a^3} R \right) + (1 + \alpha_H) R \, \delta N \right]$$

|                            | $lpha_K$     | $\alpha_B$   | $lpha_M$     | $lpha_T$     | $lpha_H$     |
|----------------------------|--------------|--------------|--------------|--------------|--------------|
| Quintessence,<br>K-essence | $\checkmark$ |              |              |              |              |
| Kinetic braiding, DGP      | $\checkmark$ | $\checkmark$ |              |              |              |
| Brans-Dicke, f(R)          | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| Horndeski                  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| Beyond Horndeski           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

#### Scalar degree of freedom

- Scalar perturbations:  $\delta N$ ,  $N_i \equiv \partial_i \psi$ ,  $h_{ij} = a^2(t) e^{2\zeta} \delta_{ij}$
- Quadratic action for the **physical degree of freedom**:

$$S^{(2)} = \frac{1}{2} \int dx^3 dt \, a^3 \left[ \mathcal{K}_t \, \dot{\zeta}^2 + \mathcal{K}_s \, \frac{(\partial_i \zeta)^2}{a^2} \right]$$
$$\mathcal{K}_t \equiv \frac{\alpha_K + 6\alpha_B^2}{(1+\alpha_B)^2}, \quad \mathcal{K}_s \equiv 2M^2 \left\{ 1 + \alpha_T - \frac{1+\alpha_H}{1+\alpha_B} \left( 1 + \alpha_M - \frac{\dot{H}}{H^2} \right) - \frac{1}{H} \frac{d}{dt} \left( \frac{1+\alpha_H}{1+\alpha_B} \right) \right\}$$

- Stability
  - No ghost:  $\mathcal{K}_t > 0$
  - No gradient instability:

$$c_s^2 \equiv -\frac{\mathcal{K}_s}{\mathcal{K}_t} > 0$$

#### **Tensor degrees of freedom**

• Quadratic action for the **tensor modes**:

$$S_{\gamma}^{(2)} = \frac{1}{2} \int dt \, d^3x \, a^3 \left[ \frac{M^2}{4} \dot{\gamma}_{ij}^2 - \frac{M^2}{4} (1 + \alpha_T) \frac{(\partial_k \gamma_{ij})^2}{a^2} \right]$$

- Stability
  - No ghost:  $M^2 > 0$
  - No gradient instability:  $c_T^2 \equiv 1 + \alpha_T > 0$

### **Extension to DHOST theories**

DL, Mancarella, Noui & Vernizzi '1703

Quadratic action in terms of 9 functions of time

 $S_{\text{quad}} = \int d^3x \, dt \, a^3 \, \frac{M^2}{2} \left\{ \delta K_{ij} \delta K^{ij} - \left(1 + \frac{2}{3} \alpha_{\text{L}}\right) \delta K^2 + (1 + \alpha_T) \left(R \frac{\delta \sqrt{h}}{a^3} + \delta_2 R\right) \right. \\ \left. + H^2 \alpha_K \delta N^2 + 4H \alpha_B \delta K \delta N + (1 + \alpha_H) R \delta N + 4\beta_1 \delta K \delta \dot{N} + \beta_2 \delta \dot{N}^2 + \frac{\beta_3}{a^2} (\partial_i \delta N)^2 \right\}$ 

Degeneracy conditions: 2 possible sets

 $\mathcal{C}_{\rm I}: \ \alpha_{\rm L} = 0, \ \beta_2 = -6\beta_1^2, \ \beta_3 = -2\beta_1 \left[ 2(1+\alpha_{\rm H}) + \beta_1(1+\alpha_{\rm T}) \right]$  $\mathcal{C}_{\rm II}: \ \beta_1 = -(1+\alpha_{\rm L})\frac{1+\alpha_{\rm H}}{1+\alpha_{\rm T}}, \ \beta_2 = -6(1+\alpha_{\rm L})\frac{(1+\alpha_{\rm H})^2}{(1+\alpha_{\rm T})^2}, \ \beta_3 = 2\frac{(1+\alpha_{\rm H})^2}{1+\alpha_{\rm T}}$ 

 $\mathcal{C}_{\mathrm{II}}$  : gradient instability either in the scalar or the tensor sector

#### **Confrontation with observations**

• Use a traditional gauge, e.g. Newtonian gauge

 $ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(t) (1-2\Psi) \delta_{ij} dx^{i} dx^{j}$ 

• Description in an arbitrary slicing ?



- Coordinate change  $t \rightarrow t + \pi(t, \vec{x})$
- Perturbations:  $\Phi, \Psi, \pi, \delta_m, \vec{v}_m$

#### **Cosmological perturbations**

• Standard equations (in GR)



#### **Cosmological perturbations**

#### Modified equations



 $G_{\text{eff}} = G_{\text{eff}}(\alpha_i), \quad \eta = \eta(\alpha_i)$ 

which can be confronted to observations (galaxy clustering, weak lensing...) [Bellini et al '15, Peronon et al. 15, Gleyzes et al 15, D'Amico et al 16, Alonso et al 16, ...] Neutron stars in Modified Gravity

## **Stars in beyond Horndeski theories**

Saito, Yamauchi, Mizuno, Gleyzes & DL '15 (see also Koyama & Sakstein '15)

1.0

0.8

0.4

0.2

<u>نې</u> 0.6

 $\epsilon = -0.5$  (orange), -0.3, -0.1, 0, 0.1,

0.15 (blue), 0.3, 0.5, 1 (red)

3

- Partial breaking of Vainshtein mechanism inside matter
   Kobayashi, Watanabe & Yamauchi '14
- Spherical symmetry & nonrelativistic limit:

 $\frac{\mathrm{d}\Phi}{\mathrm{d}r} = G_{\mathrm{N}} \left( \frac{\mathcal{M}}{r^2} - \epsilon \frac{\mathrm{d}^2 \mathcal{M}}{\mathrm{d}r^2} \right) , \qquad \mathcal{M}(r) = 4\pi \int_0^r {r'}^2 \rho(r') \mathrm{d}r'$ 

- Modified Lane-Emden equation (for  $P = K \rho^{1+\frac{1}{n}}$ )
  - Universal bound  $\epsilon < 1/6$
  - Astrophysical constraints on  $\Upsilon \equiv -4\epsilon$  0.000 [Sakstein 15, Jain et al 15]

#### Neutron stars in beyond Horndeski

Babichev, Koyama, DL, Saito & Sakstein '16

• Model  $S = \int d^4x \sqrt{-g} \left[ M_P^2 \left( \frac{R}{2} - \Lambda \right) - k_2 X + f_4 L_4^{\text{bH}} \right]$ with

with

$$L_4^{\rm bH} = -X \left[ (\Box \phi)^2 - (\phi_{\mu\nu})^2 \right] + 2\phi^{\mu} \phi^{\nu} \left[ \phi_{\mu\nu} \Box \phi - \phi_{\mu\sigma} \phi^{\sigma}_{\ \nu} \right]$$

• Cosmological solution: **de Sitter** with  $\dot{\phi} = v_0 \neq 0$ ,  $H \neq 0$ 

$$ds^{2} = -(1 - H^{2}r^{2}) dt^{2} + \frac{dr^{2}}{1 - H^{2}r^{2}} + r^{2}d\Omega_{2}^{2}$$
$$\phi(r, t) = v_{0}t + \frac{v_{0}}{2H}\ln\left(1 - H^{2}r^{2}\right)$$

#### **Neutron stars in beyond Horndeski**

Babichev, Koyama, DL, Saito & Sakstein '16

Spherical symmetric solutions

 $ds^{2} = -e^{\nu(r)}dt^{2} + e^{\lambda(r)}dr^{2} + r^{2}d\Omega_{2}^{2}$ 

with  $\nu(r) = \nu_{\text{cosmo}} + \delta\nu(r)$ ,  $\lambda(r) = \lambda_{\text{cosmo}} + \delta\lambda(r)$  $\phi(t, r) = \phi_{\text{cosmo}}(t, r) + \delta\phi(r)$ 

External solution: Schwarzschild-de Sitter

$$ds^{2} = -fdt^{2} + f^{-1}dr^{2} + r^{2}d\Omega_{2}^{2}, \quad f \equiv 1 - \frac{2G_{N}M}{r} - H^{2}r^{2}$$
$$\phi(t,r) = v_{0} \left[ t - \int dr \frac{\sqrt{1-f}}{f} \right] \qquad G_{N} \equiv \frac{3G}{5\sigma^{2} - 2}$$

## **Neutron stars in beyond Horndeski**

Babichev, Koyama, DL, Saito & Sakstein '16

Internal solution

System analog to TOV equations

• Mass-radius relations

For  $\Upsilon < 0$  the maximum mass is larger than in GR.



• See also Sakstein, Babichev, Koyama, DL & Saito '16

## Conclusions

- Modified gravity is a very active field of research, mainly motivated by
  - Cosmic acceleration
  - Testing GR
- Recent developments in the construction of scalar-tensor theories, in particular with the classification of DHOST theories, which contain a single scalar dof.
- Most existing scalar-tensor theories of modified gravity can be tested in cosmology, by using the effective description of dark energy and modified gravity.
- Modified gravity theories must also be tested in compact objects.