Search of new physics through flavor physics observables

Olcyr Sumensari

Advisor: Damir Bečirević (LPT Orsay/Univ. Paris-Sud)

Journée du laboratoire d'excellence P2IO. November 15, 2017.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 674896.

The Standard Model

- Gauge sector of the SM entirely fixed by symmetry:
 - \Rightarrow Only a handful of parameters.
 - \Rightarrow Theory renormalizable and verified at the loop-level (oblique parameters).
- Flavor sector not fixed by symmetry :
 - \Rightarrow 13 free parameters (masses and quark mixing) fixed by data.

$$\mathcal{L}_{Y} = -\frac{\mathbf{Y}_{\ell}}{L} \Phi \ell_{R} - \frac{\mathbf{Y}_{d}}{Q} \Phi d_{R} - \frac{\mathbf{Y}_{u}}{Q} \tilde{\Phi} u_{R} + \text{h.c.}$$

⇒ These (many) parameters exhibit a hierarchial structure we do not understand.

The Flavor Problem

- Striking hierarchy ⇒ Flavor theory?
- Quarks and leptons mix in completely different ways.

"Who ordered that?"

Motivation

- Assumption in the SM: the couplings of quarks and leptons with the gauge bosons are flavor universal by construction (up to fermion mass effects).
- A few cracks $[\approx 2-3\sigma]$ appeared recently in B-meson decays
 - ⇒ Violation of Lepton Flavor Universality (LFU)?
 - \Rightarrow To explain those observations (in both tree-level and loop induced decays), one needs to go beyond the SM.

LFUV in B Decays [pre-2017]

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu})}, \qquad R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu \mu)}{\mathcal{B}(B^+ \to K^+ ee)} \bigg|_{q^2 \in [1,6] \text{ GeV}^2}$$

- NEW (FPCP17): LHCb, $R_{D^*} = 0.285(35)$.
- NEW: LHCb, $R_{J/\Psi} = 0.71(17)(18)$. Larger than th. predictions (?)

4 / 9

LFUV in B Decays [2017]

$$R_{K^*} = \frac{\mathcal{B}(B \to K^* \mu \mu)}{\mathcal{B}(B \to K^* ee)} \bigg|_{q^2 \in [q_{\min}^2, q_{\max}^2]}$$
 [LHCb, 1705.05802]

• New results in two bins of q^2 : $[\approx 2.5\sigma]$

Olcyr Sumensari LFU(V) in B decays 5 / 9

TASK:

Using a large ensemble of flavor physics observables as constraints (such as $Z\to\ell\ell$, $W\to\ell\nu$, $B_s\to\mu\mu$...), we would like to build a model of New Physics that can explain the so-called B-physics anomalies.

⇒ This is a very <u>difficult problem to solve</u> because of the large amount of experimental <u>constraints!</u>

TASK:

Using a large ensemble of flavor physics observables as constraints (such as $Z\to\ell\ell$, $W\to\ell\nu$, $B_s\to\mu\mu$...), we would like to build a model of New Physics that can explain the so-called B-physics anomalies.

 \Rightarrow This is a very <u>difficult problem to solve</u> because of the <u>large amount</u> of experimental <u>constraints!</u>

An important part of my thesis was dedicated to this issue.

- \Rightarrow I showed that extending the Higgs sector is not enough.
 - [P. Arnan, D. Bečirević, F. Mescia, OS. 2017]
- \Rightarrow Instead, the scenarios involving a leptoquark (LQ) boson can do the job. Here I focus on ${\bf R}_{\bf K}$ and ${\bf R}_{{\bf K}^*}.$
 - [D. Bečirević, S. Fajfer, N. Košnik, OS. 2016]
 - [D. Bečirević, OS. 2017]

The standard strategy of introducing a low-energy LQ boson cannot provide a tree-level solution to R_K and R_{K^*} without causing other problems (e.g., proton stability and/or flavor constraints).

c.f. [D. Bečirević, N. Košnik, OS, R. Zukanovich. 2016]
[B. Fornal, B. Grinstein. 2017]

The only scalar LQ which does not disturb the proton stability predicts $R_{K^{(*)}}^{\rm NP} > R_{K^{(*)}}^{\rm SM}$, in disagreement with the LHCb findings.

I showed that a peculiar choice of the Yukawa couplings can circumvent this problem and explain R_K and R_{K^*} via loops:

[D. Bečirević, OS. 2017]

$$\mathcal{L}_{\Delta} = (g_R)_{ij} \bar{Q}_i \Delta \ell_{Rj} + (g_L)_{ij} \bar{u}_{Ri} \widetilde{\Delta}^{\dagger} L_j + \text{h.c.}, \qquad \Delta = (3, 2)_{7/6}$$

 \Rightarrow We take $g_R = 0$ and $g_L \neq 0$.

⇒ This provides a viable explanation which can be **tested experimentally**, e.g. through the direct searches at the LHC.

Perspectives

- We are entering a precision era of flavor physics: maturity of LQCD and unprecedented precision in flavor experiments.
- Collective effort in flavor experiments is/will be a guide to theory: NA62, BES-III and LHCb, and the forthcoming Belle-II, KOTO, $(g-2)_{\mu}$, Mu2E...
- Interesting hints of LFU violation in $R_{K^{(*)}}$ and $R_{D^{(*)}}$: \Rightarrow Use the experimental data to build a model of NP and verify its validity in direct searches!
- Higgs Flavor Era around the corner?

Thank you!

Back-up

Flavor physics observables

Precision flavor physics: search of deviations w.r.t. the SM predictions

• Flavor changing charged currents: e.g. b o c au
u

ullet Flavor changing <u>neutral</u> currents: e.g. $b o s\ell\ell$

- Possible mostly due to the maturity of LQCD in determining the relevant hadronic matrix elements (form factors, decay constants, bag parameters).
- o Particularly interesting due to the deviations from LFU observed in *B*-meson decays: $B \to D^{(*)} \ell \bar{\nu} \ (\ell = e, \mu, \tau)$ and $B \to K^{(*)} \ell \ell \ (\ell = e, \mu)$.

 \Rightarrow Focus on NP couplings to muons only

[couplings to electrons are also possible, cf. Hiller, Schmaltz 2014]

$$SU(3)_c \times SU(2)_L \times U(1)_Y$$
:

N.B.
$$Q = Y + T_3$$
.

	BNC	Interaction	WC	$R_K/R_K^{ m SM}$	$R_{K^*}/R_{K^*}^{\mathrm{SM}}$
$(\bar{3},1)_{4/3}$	X	$\overline{d_R^C} \mathbf{\Delta} \ell_R$	$(C_9)' = (C_{10})'$	≈ 1	≈ 1
$(3,2)_{7/6}$	✓	$\overline{Q} {f \Delta} \ell_R$	$C_9 = C_{10}$	> 1	> 1
$(3,2)_{1/6}$	✓	$\overline{d_R}\widetilde{\boldsymbol{\Delta}}^{\dagger}L$	$(C_9)' = -(C_{10})'$	< 1	> 1
$(\bar{3},3)_{1/3}$	X	$\overline{Q^C}i au_2oldsymbol{ au}\cdotoldsymbol{\Delta}L$	$C_9 = -C_{10}$	< 1	< 1

 \Rightarrow No fully viable model. Triplet can be used, but further symmetries are needed to forbid **proton decay** (see [Dorsner et al. 2017] for a GUT mechanism).

LFU violation

(i)
$$b \to s\mu^+\mu^-$$

• FCNC process:

Form-factor errors cancel out in the ratio ⇒ Extremely clean prediction.

$$R_K \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu \mu)}{\mathcal{B}(B^+ \to K^+ ee)} \bigg|_{q^2 \in [1,6] \text{ GeV}^2} \stackrel{\text{SM}}{=} 1.00(1)$$

[Bordone et al. 2016]

• 2.6σ **deviation** observed by LHCb:

$$R_K^{\text{exp}} = 0.745_{-0.074}^{+0.090}(\text{stat}) \pm 0.036(\text{syst})$$

• 2.5σ deviation in two bins for $B \to K^*\mu\mu$: [0.045, 1.1] and [1.1, 6] GeV².

Olcyr Sumensari LFU(V) in B decays 9 /

- 3.9 σ combined deviation from the SM [theory error under control?]
- 2.2σ deviation if only R_D is considered.
- 2σ deviation in $R_{J/\Psi}$?

9 / 9

We can also explain R_D if a new ingredient is added to the model $\Delta^{1/6} = (3,2)_{1/6}$: three light RH neutrinos ν_R .

$$\mathcal{L}_Y = \mathbf{Y}_{ij}^L \bar{L}_i \widetilde{\Delta}^{(1/6)} d_{Rj} + \mathbf{Y}_{ij}^R \bar{Q}_i \Delta^{(1/6)} \nu_{Rj} + \text{h.c.}$$

For
$$b \to c\tau\bar{\nu}$$
 \Rightarrow $|\mathcal{M}(B \to D^{(*)}\ell\nu)|^2 = |\mathcal{M}_{\rm SM}|^2 + |\mathcal{M}_{\rm NP}|^2$.

Naturally generates
$$R_{D^{(*)}}^{ ext{NP}} > R_{D^{(*)}}^{ ext{SM}}$$
 if $|Y_{b au}^L| \gtrsim |Y_{b\mu}^L|$.

A SLQ Model for R_K and R_D

We can also explain R_D if a new ingredient is added to the model $\Delta^{1/6} = (3,2)_{1/6}$: three light RH neutrinos ν_R .

$$\mathcal{L}_Y = \mathbf{Y}_{ij}^L \bar{L}_i \widetilde{\Delta}^{(1/6)} d_{Rj} + \mathbf{Y}_{ij}^R \bar{Q}_i \Delta^{(1/6)} \nu_{Rj} + \text{h.c.}$$

- Passed all flavor tests: $\mathcal{B}(B_s \to \mu^+ \mu^-)$, $\mathcal{B}(B \to K \mu \mu)_{\text{high } q^2}$, Δm_{B_s} , $\mathcal{B}(B \to \tau \bar{\nu})$, $\mathcal{B}(D_s \to \tau \bar{\nu})$, $\mathcal{B}(B \to K \nu \bar{\nu})$, $\mathcal{B}(B \to K \mu \tau)$ etc.
- Many experimental signatures for LHCb and Belle-2.

Olcyr Sumensari LFU(V) in B decays 9 /

If the LFUV takes place at scales well above EWSB, then use OPE:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S,...} \left(C_i(\mu) \mathcal{O}_i + C_i'(\mu) \mathcal{O}_i' \right) \right]$$

• Operators relevant to $b \to s\ell\ell$ are

$$\begin{bmatrix} \mathcal{O}_{9}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell), & \mathcal{O}_{10}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma^{5}\ell), \\ \mathcal{O}_{S}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\ell), & \mathcal{O}_{P}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_{5}\ell), \\ \mathcal{O}_{7}^{(\prime)} = m_{b}(\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu} & \dots \end{bmatrix}$$

ullet To explain $R_{K^{(*)}}^{
m exp} < R_{K^{(*)}}^{
m SM}$, one needs effective coefficients $C_9,\,C_{10}$.