

Control of the gravitational wave interferometric detector Advanced Virgo

Julia Casanueva

Gravitational Waves (GW)

- → Predicted by Einstein in 1916 → consequence of General Relativity WHAT ARE GWs?
 - Perturbations of the metric (geometry of space-time)
 - Caused by an acceleration of masses
 - Propagate at the speed of light.

WHY GWs ARE INTERESTING?

- New source of astrophysical observations → complementary to EM spectra + <u>new phenomena</u>
- Test General Relativity

The 14th of September 2015 the Advanced LIGO detectors in Hanford and Livingston made the first detection of a GW

Sources of GW

- Emitted power: <u>asymmetric</u> mass distribution, <u>compact</u> and <u>relativistic.</u>
- → Distance: h decreases as <u>1/r</u>

Binary Neutron Star (BNS) @ 15 Mpc *h* ~ 10-21

Compact Binary Coalescence

Some interesting sources for *ground-based GW detectors*

Rotating Neutron Star

Supernova

GW detection principle

→ Effect of the passage of a GW → change on the distance between free masses

> $\delta L / L \sim h$ GW amplitude

Mass that senses only the gravitational force

Differential effect:

MICHELSON INTERFEROMETER + SUSPENDED MIRRORS

Interference depends on the phase difference between the Michelson arms → <u>sensitive to</u> <u>length difference</u>

GW detector working point

Interferometer Sensing and Control (ISC)

TARGET:

Bring the interferometer to its working point in a reliable and controlled way

PROBLEM:

- → Residual seismic noise (~1µm rms, ~1µm/s) moves the mirrors both angularly and longitudinally → individual working point is crossed in a random way
- Active control is necessary to keep the ITF at its working point
 - → <u>4 longitudinal</u> DOFs (lengths) + <u>frequency stabilization</u> (laser)
 - → <u>16 angular</u> DOFs

2nd generation of GW detectors

- Ist generation (until 2011) served as a proof of the working principle
 - → No detection was made → 2nd generation improve sensitivity by a factor 10!

Advanced detectors added a set of major upgrades to lower the limiting noises (shot noise, thermal noise...) and increase the sensitivity

Changes affecting ISC

- Increase of finesse in the arm cavities
- → Change of arm cavities geometry
- Digital loop for frequency stabilization
- → Change of PRC geometry

Thesis work

Advanced Virgo interferometer can be controlled in a reliable and repeatable way

- → Analysis of the impact of the upgrades on the control of the ITF using different simulations → Spot challenges
- Analysis of the solutions proposed
- Practical implementation during oneyear commissioning
 - Dynamical effects
 - Stability problems
 - More complex alignment
 - New frequency stabilization scheme
 - Coupling between error signals
 - Power variations

Lock acquisition sequence

Once the problems previously presented were solved, the lock acquisition sequence became a robust and repeatable

Advanced Virgo sensitivity

Advanced Virgo joined the Avanced LIGO interferometers on the O2 data taking the 1st of August until the 25th with 82.5% of duty cycle and ~26 Mpc of BNS range

First detection: GW170814

- On August 14th a gravitational wave arrived at 10:30:43 UTC at Livingston, 8 ms later at Hanford and 14 ms later at Virgo
 - The presence of Virgo reduced the error in the sky area by a factor 20

