SVOM
ToO-Multi_Messenger Programming Principles and Simulation Overview
J. JAUBERT (CNES) - V. DEBOUT (CS for CNES)
N. LEROY - J.G. DUCOIN (LAL)

- Reminders of ToO-MM scope and programming principles
- Prototype for tiles sequencing
- Examples of scenarios and results
- Conclusion and Further Prospects

ToO-Multi Messengers scope

- Definition for the system :

> Like all Target of Opportunity, unplanned observation requests decided from ground
> Supplement ToO-Exceptional subset
$>$ To be performed within short delays / as soon as possible
$>$ Need a tiling of a sky area (e g, error box linked to GW detection), with for each tile :
\checkmark Pointing direction
\checkmark Effective observing duration
\checkmark Priority

ToO-MM main requirements for tiles programming

*Current requirements from MRR + SRD documents :

>1 ToO-MM / month (\rightarrow goal : 1 ToO-MM / week)
$>$ Observation start (1rst tile) < 12h from ToO-MM alert acceptance
$>$ ToO-MM : from 4 up to 25 tiles with effective observation duration $\sim 10 \mathrm{mn} /$ tile
$>$ Max 14 orbits (~ 1 day)
$>$ Max 3 tiles / orbit (\rightarrow goal : 5 tiles / orbit)
$>$ Tiles $\subset\left(5^{\circ} \times 5^{\circ}\right)$ in each orbit
> Implicit : Tiles observed out of Earth occultation and South-Atlantic Anomaly (SAA) crossings, Sun and Moon constraints for MXT \& VT applicable
$>$ MXT photons and VT attitude charts sent to ground via VHF network (for each tile)

ToO-MM main requirements for tiles programming

*Additional requirements for tiles programming process :

$>$ Tiles have priority levels assigned by scientific users (tiling definition process)
$>$ Slews (i.e. attitude maneuvers) $>5^{\circ}$ performed during Earth occultations or SAA crossings (not mandatory, as much as possible)
$>$ Tiles possible sequencing criteria :
\checkmark Priority levels (Nominal)
\checkmark Minimization of whole sequence duration (Alternative TBC)
\checkmark Minimization of sum of slews amplitudes or amplitude of largest slew (Alternative TBC)

Main Constraint : Available observing duration per orbit

For specific target directions, accessibility periods can vary a lot from one orbit to the next one due to Earth occultations and South-Atlantic Anomaly (SAA) crossings combining together :

Tiles Programming and Duration of whole ToO-MM sequence can vary a lot depending on the start date

- Reminders of ToO-MM scope and programming principles
- Prototype for tiles sequencing
- Examples of scenarios and results
- Conclusion and Further Prospects

ToO-Multi-Messenger Prototype

* A first version of a prototype is implemented to program all the tiles of a ToO-MM request considering :
\checkmark The definition of the tiles (number, pointing directions, observing duration, priorities)
\checkmark The S-band pass selected for TC upload (\rightarrow earliest start date)
\checkmark The available observing duration on following orbits (Earth occultations, SAA crossings)
\checkmark The instruments constraints (MXT, VT) wrt Sun \& Moon
\checkmark The slew speed ($4 \mathrm{deg} / \mathrm{mn}$) with random draw for the current pointing preceding ToO-MM start date
\checkmark The system constraints with some possible relaxation to assess results and impacts :
- Total number of tiles (can be more than 25),
- Sequence duration (can be longer than 14 orbits),
- Number of tiles / orbit (can be more than 3 tiles / orbit),
- Slews $>5^{\circ}$ during occultation or not, tiles of one given orbit in $\left(5^{\circ} \times 5^{\circ}\right)$ or not
- Criteria for sequencing (tiles priority is the nominal, alternatives for sequence duration or slews minimization)
* Consideration of all S-band passes over a time span (part of year when Sun constraint is ok)
\rightarrow Statistics on tiling sequences (sequence duration, tiles distribution, slews, ...)

ToO-Multi-Messenger Prototype

Science Center / Scenario N

Mission Center

Pointings programming
(priority ranking)

 . .

- Reminders of ToO-MM scope and programming principles
- Prototype for tiles sequencing
- Examples of scenarios and results
- Tiles definition process
- Tiles programming
- Conclusion and Further Prospects

ToO-Multi-Messenger Prototype

Representative scenarios of ToO-MM requests delivered by LAL (N. Leroy / JG Ducoin) :
$\checkmark 2$ scenarios:

- GW170814: 42 tiles / 10 mn obs per tile
- GW170817 : 36 tiles / 10 mn obs per tile
$\checkmark \sim 3500$ useful passes over 1 year (when Sun constraint ok)

Scheduling by probability

Prioritizing tiles by probability inside each tile - Improve search with 3 tiles per orbit

BBH Exemple : 170814

Probability performed for 42 tiles : 48,96 \%
event 170814
percentage performed : 1.91\%

Scheduling by probability

Prioritizing tiles by probability inside each tile

BNS Exemple : 170817
Probability performed for 42 tiles : 90,27 \%

Galaxies targeting

Researched events happened in a galaxy

. Catalog selection \rightarrow First example with GLADE
\checkmark constructed from four existing galaxies catalogs : GWGC, 2MPZ, 2MASS XSC and HyperLEDA.
\checkmark GLADE contains 3,262,883 objects. (http://aquarius.elte.hu/glade/)

- Selection of galaxies inside the 3D volume RA, Dec, distance (using 3 sigma error for the latest)
- Priorisation of tiles using the number of galaxies inside each of them

Galaxies targeting

BBH CASE: GW 170814

event 170814
galaxies performed : 79/1218
orbit : 1/14
number of tiles : 1

Limitation of 14 orbits and 3 tiles per orbit

	Galaxies performed	Orbit $(\operatorname{max~14)}$	Number of tile $(\max 42)$
50%	$1197 / 1218$	14	42
90%	$4493 / 9914$	14	42

Galaxies targeting

BNS CASE : GW 170817

Limitation of 14 orbits and 3 tiles per orbit

	Galaxies performed	Orbit $(\operatorname{max~14)}$	Number of tile $(\operatorname{max~42)}$
50%	$70 / 70$	4	11
90%	$185 / 185$	13	36

Galaxies targeting

Ongoing :

- Study different catalogs : completness issue, distance computation, ...
- Include type of galaxy ?
- More tests are performed with :
~200 simulated 02 skymaps triple coincidence
Distance between 5 and 270 Mpc
Error region spanning from 1.2 and 3000 deg2

ToO-Multi-Messenger Prototype

GW170814 : 42 tiles
GW170817 : 36 tiles

ToO-Multi-Messenger Prototype

Slews $>5^{\circ}$ not constrained

Histogram and cumulative distribution of whole sequence duration for all S-band passes over 1 year

 (sequencing with tiles priorities)To $\mathrm{T}_{0}=$ Start S-band slot
$\operatorname{Min}=18 \mathrm{~h}$
Max = $25 \mathrm{~h} / 79 \mathrm{~h}$ (Moon)
Aver. $=22 \mathrm{~h}$

ToO-Multi-Messenger Prototype

GW170817 : 36 tiles, 10 mn / tile, limited 3 tiles / orb

ToO-Multi-Messenger Prototype

ToO-Multi-Messenger Prototype

Slews $>5^{\circ}$ not constrained

Histogram and cumulative distribution of numbers of tiles per orbit over all sequences for all S-band passes over 1 year
(sequencing with tiles priorities)

Most of orbits with 3 tiles

Orbits begin/end at subsolar point

Slews $>5^{\circ}$ not constrained

Histogram and cumulative distribution of whole sequence duration for all S-band passes over 1 year (sequencing with tiles priorities)

$\mathrm{T}_{0}=$ Start S-band slot

$$
\begin{aligned}
& \operatorname{Min}=12 \mathrm{~h} \\
& \operatorname{Max}=21 \mathrm{~h} / 75 \mathrm{~h} \text { (Moon) } \\
& \text { Aver. }=15 \mathrm{~h}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Min}=18 \mathrm{~h} \\
& \text { Max }=25 \mathrm{~h} / 79 \mathrm{~h} \text { (Moon) } \\
& \text { Aver. }=22 \mathrm{~h}
\end{aligned}
$$

Limited 3 tiles / orb

ToO-Multi-Messenger Prototype

GW170817 : 36 tiles, 10 mn / tile, tiles / orb not limited

ToO-Multi-Messenger Prototype

ToO-Multi-Messenger Prototype

Slews $>5^{\circ}$ not constrained

Histogram and cumulative distribution of numbers of tiles per orbit over all sequences for all S-band passes over 1 year
(sequencing with tiles priorities)

Orbits begin/end at subsolar point

```
...
```

ToO-Multi-Messenger Prototype

Slews $>5^{\circ}$ not constrained

Histogram and cumulative distribution of whole sequence duration for all S-band passes over 1 year (sequencing with tiles priorities)
$\mathrm{T}_{0}=$ Start S-band slot

$$
\begin{aligned}
& \operatorname{Min}=22 \mathrm{~h} \\
& \text { Max }=29 \mathrm{~h} \\
& \text { Aver. }=25 \mathrm{~h}
\end{aligned}
$$

ToO-Multi-Messenger Prototype

Slews $>5^{\circ}$ not constrained

Histogram and cumulative distribution of numbers of tiles per orbit over all sequences for all S-band passes over 1 year (sequencing with tiles priorities)

Most of orbits with 3 tiles

Orbits begin/end at subsolar point

ToO-Multi-Messenger Prototype
GW170814 : 42 tiles, 10 mn / tile, tiles / orb not limited

Slews $>5^{\circ}$ not constrained

Histogram and cumulative distribution of whole sequence duration for all S-band passes over 1 year (sequencing with tiles priorities)

(s) $\mathrm{T}_{0}=$ Start S-band slot

Min = 14 h
$\operatorname{Max}=23 \mathrm{~h}$
Aver. $=19 \mathrm{~h}$
$\mathrm{Min}=22 \mathrm{~h}$
Max $=29 \mathrm{~h}$
Aver. $=25 \mathrm{~h}$
Limited 3 tiles / orb

ToO-Multi-Messenger Prototype
GW170814 : 42 tiles, 10 mn / tile, tiles / orb not limited

Slews $>5^{\circ}$ not constrained

Histogram and cumulative distribution of numbers of tiles per orbit over all sequences for all S-band passes over 1 year
(sequencing with tiles priorities)
rbits begin/end at subsolar point

- Reminders of ToO-MM scope and programming principles
- Prototype for tiles sequencing
- Examples of scenarios and results
- Conclusion and Further Prospects

Conclusions and further prospects

* The prototype implemented currently allows for statistically assessing the duration of whole sequences of tiling relating to ToO-MM scenarios with possible variations for constraints
* Refine consideration of constraints (slew constraints / occultation periods if needed)
* Implement model for ground delays from MM alert up to S-band TC upload \rightarrow Total response time for ToO-MM requests
* Simulations to be performed with additional scenarios of ToO-MM requests delivered by LAL :
$\checkmark \sim 200$ new scenarios simulated from skymaps

谢谢
 Thank You

