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Ultra relativistic jet associated with the formation of a stellar mass black hole

What are Gamma-Ray Bursts?
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BH, Magnetar ?



What are Gamma-Ray Bursts?
Ultra relativistic jet associated with the formation of a stellar mass black hole
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What are Gamma-Ray Bursts?
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‣ LGRBs allow us to study the Universe up to high redshift 

- Detected by gamma rays which are easily observable at 
high z (and largely unaffected by dust) 

- Afterglow is bright at high-z compared to other sources 
and benefits from time dilation 

➡ In particular, LGRBs offer a powerful, unique tool to probe 
the SFR at high-z

Context
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Interest of studying Long GRBs (LGRBs)?



Robertson & Ellis +12

Link between SFR and  
LGRB rate: LGRB efficiency 
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‣ Studies compared LGRB rate to 
SFR but using biased or 
incomplete samples 

‣ To date, only about 30% of Swift 
GRBs have a redshift

➡ Need for complete samples of LGRBs 
(e.g. TOUGH (Hjorth+12), SHOALS (Perley+16a,b), BAT6 (Salvaterra+12) )



LGRB efficiency: 
proper definition

‣ Number of core-collapses per year per comoving volume :  

‣ Number of LGRBs per year per comoving volume :  

➡   

with            the fraction of core-collapses that form a LGRB 

‣ Collapse rate : 

‣ GRB rate : 

‣ In our simulation :    
 
with           deduced from the normalization obtained by fitting the  
intensity constraint (Stern+01)
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LGRB efficiency



‣ To gain insight into their progenitors, one method is to constrain 
the global statistical properties of LGRBs and their rate via a 
population model  

‣ Take advantage of the wide variety of observational constraints  
available on the GRB prompt emission, with careful selection  
(e.g. from CGRO/BATSE, Swift/BAT, Fermi/GBM…) 

‣ Test various correlations between parameters  
(e.g. Epeak - Liso: intrinsic correlation and/or observational bias?)

LGRB population model
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‣ What is the Luminosity Function (e.g. Pescalli+16)?  

Does it evolve with redshift (e.g. Petrosian+15)? 

‣ What is the redshift distribution (e.g. Wanderman & Piran 10)?  

How does it compare to the Cosmic Star Formation Rate (e.g. Daigne+06)?  

What does this mean for the LGRB efficiency and progenitors? 

‣ Are there correlations between physical quantities, pointing to some 

underlying physics? (e.g. “Amati-like” correlations)

LGRB rates and luminosity
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Population Mock 
observations

Real 
observations

Simulate

Compare

Constrain
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Population model scheme

Based on MC model from Daigne et al. 2006

Ingredients:  
(z, L, etc…) distributions 

Assumptions: 
parameters (Lmin, Lmax, slope…)
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credit : NASA/Swift/Mary Pat 
Hrybyk-Keith and John Jones

EpeakSpectrum :

Luminosity :  Liso

Redshift :  z

α   β 

Ingredients for the population model

β+2
Epeak

α+2



    Functional form

‣ Power law  

‣ Schechter function 

‣ Evolution ?
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Luminosity distribution
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‣ Fundamental to understanding the LGRB production efficiency of stars 

‣ Assume 

Redshift distribution
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RGRB = A

⇢
ea z z < zm
eb z e(a�b) zm z � zm

Vangioni+15



‣ Fundamental to understanding the LGRB production efficiency of stars 
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‣ α : low-energy index 

‣ β : high-energy index  

‣ Epeak  : peak in the νFν spectrum 

‣ Different functional forms 
(Band et al. 1993, exponential 
cut-off, power-law…)

credits : http://fermi.gsfc.nasa.gov16

Spectral parameters

β+2
Epeak

α+2

http://fermi.gsfc.nasa.gov


Observational constraints I: Intensity
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‣ Intensity constraint (Stern+01) :  
Log N - Log P diagram 

‣ Based on ~3300 LGRBs detected by  
CGRO/BATSE over 9.1 years  
(on board trigger + offline search) 

‣ Corrected for fraction of sky observed, 
live time of the search and  
detection efficiency

‣ Normalization of our model to this 
constraint yields the physical duration 
of our simulation: 



Observational constraints II: Spectrum
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‣ Spectral constraint : Peak energy 
distribution of GBM (Gruber+14) 

‣ Based on ~1000 LGRBs with  
 
detected by Fermi/GBM 

‣ Uses the peak energy at the peak flux, 
derived from a Band spectral model fit 
to the GRB spectrum 



Observational constraints III: Redshift
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‣ Redshift constraint : Redshift distribution 
of extended BAT6 sample (Pescalli+16) 

‣ Based on 82 LGRBs with  
 
detected by Swift/BAT and favorable 
observing conditions

P15�150 keV � 2.6 ph cm�2 s�1



‣ Best fit from Schechter Luminosity Function 

‣ LogNormal Peak Energy distribution 

‣ Broken exponential Redshift distribution 

‣ No LF evolution (k = 0)

Results
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‣ Best fit from Schechter Luminosity Function 

‣ LogNormal Peak Energy distribution 

‣ Broken exponential Redshift distribution 

‣ mild LF evolution (k = 0.5)

Results
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‣ Best fit from Schechter Luminosity Function 

‣ LogNormal Peak Energy distribution 

‣ Broken exponential Redshift distribution 

‣ LF evolution (k = 1.0)

Results
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‣ Best fit from Schechter Luminosity Function 

‣ LogNormal Peak Energy distribution 

‣ Broken exponential Redshift distribution 

‣ strong LF evolution (k = 2.0)

Results
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Breaking the degeneracy

k = 0
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Breaking the degeneracy
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Breaking the degeneracy

k = 1
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Breaking the degeneracy
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k = 2

‣ Model with mild luminosity evolution 
best fits the observations
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Highest z in Redshift Constraint

28

Implication for GRB efficiency

True rate:
4⇡

< ⌦ >

‣ Model with mild luminosity evolution has 
increasing LGRB efficiency with redshift 
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Open questions

‣ What are the implications for the progenitors? 

‣ Are the observed “Amati-like” correlations intrinsic 
or caused by selection? 

‣ What about X-Ray Flashes and X-Ray Rich GRBs? 

‣ What does this mean for SVOM ?



- On-axis:
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Predicting SVOM/ECLAIRs’ detection rate
‣ A naïve model for detection based on the peak flux
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➡ Working to add image mode
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Preliminary SVOM redshift distribution

k = 0

k = 0.5

k = 1

‣ Challenge for SVOM: 
increase fraction of GRBs followed-up (1/3 -> 2/3)
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Conclusion

‣ First model that uses such a wide variety of observational constraints 
with a careful, controlled selection 

‣ Results seem to indicate a mild luminosity evolution and an 
increasing LGRB efficiency with redshift. (Palmerio & Daigne in prep.) 

‣ Could be linked to metallicity threshold of host galaxy studies.  
Other factors (binarity…) ? 

‣ Important bias to understand before using LGRBs as tracers of 
Star Formation
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Perspectives

‣ In progress: 

- test intrinsic “Amati-like” correlations 

- compare with other studies 

‣ Added value:  

- use model to predict SVOM’s GRB detection rate (in progress)

‣ Extend this method to short GRBs (but lower statistics…)
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‣ Number of collapses per year per comoving volume is given by :  
 
 
 
where            is the Star Formation Rate Density  
 
and            is the mean mass deduced from the IMF of stars:  
 
 
 
and                                is the core-collapse probability:

Number of collapses



‣ Fluence mode: 
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Predicting SVOM’s detection rate

‣ Two detection modes: flux and fluence

‣ Detection at n sigma if: 

Average flux

P 0
on

= P
on

C
var

Cvar =
P̄

Ppeak

Peak fluxVariability indicator

Burst durationP 0
on

�t >
n
p
B�t

O
ij



37

Other observable outputs

‣ Test for the presence of intrinsic correlations in LGRBs



‣ Best fit from power law Luminosity Function 

‣ LogNormal Peak Energy distribution 

‣ Broken exponential Redshift distribution

Results
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MCMC performance



α  and β are drawn from the latest GBM spectral catalog 
(Gruber+14), with certain selection criteria

Spectral parameter distribution
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Ep GBM cut selection

41 S. Antier, PhD thesis



High redshift detectability
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credits : Lamb & Reichart+00

GRB970228



We explore two different 
distributions regarding Epeak  : 

‣ Epeak - Liso correlation from 
Yonetoku+04  

‣ Independent lognormal 
distribution.
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Spectral parameter distribution



‣ LGRBs occur in faint blue galaxies (e.g. Le Floc’h+03) 

‣ When resolved, they occur in (UV-)bright regions of their host, 

with low galactocentric offset (e.g. Lyman+17) 

‣ CCSN features appear at later times in the afterglow spectrum 
(e.g. Hjorth+03) 

➡ Link between Star Formation Rate and LGRB rate? 

➡ GRB efficiency: fraction of core collapses that form LGRBs

LGRBs and  
Star Formation
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