17 May 2018

Target Selection of the General Program of SVOM

Dawei Xu, NAOC

In coll. with

Jing Wang, S. Komossa, Jianyan Wei, Yulei Qiu & Huali Li

Sample selection

correlation with the RASS-BSC

The AGN science

the extremes of AGN variability

Sample Selection

Why ROSAT?

- **MXT** 0.2-6 keV
- **ROSAT** 0.1-2.4 keV

Why the ROSAT all-sky survey bright source catalog?

RASS-BSC: contains 18,811 sources (Voges et al. 1999)

- > down to a limiting ROSAT PSPC count-rate of 0.05 cts s⁻¹ in 0.1–2.4 keV
- \blacktriangleright with a detection likelihood of at least 15
- \succ at least 15 source counts

Sample Selection

- 2,507 ROSAT-BSC sources close (i.e., within 10°) to the B1 law.
- Correlation with exisiting data bases:
- We have performed a cross-correlation of these sources with various cataloges. These cataloges include public data bases like the NED or SIMBAD and the latest versions of published cataoges or cataloges in print.

Sample Selection 2507 RASS-BSC entries 83% identified 17% unidentified **≦60**^{°°} (416) **≦60**["] (2091) extragalactic(63%) galactic(21%) (523) (1568) (flare stars, CVs, WDs, variable stars, binaries....) AGNs(56%) Galaxy Clusters(6%) Galaxies(1%) (1399) (140)(29)

AGN Paradigm

The extremes of AGN variability

- Deep X-ray low-flux states in (NL)S1 galaxies (factor 10)
- AGNs at the highest amplitudes: giant drops & outbursts (>factor 100)
- "Changing-look" AGNs: multi-λ view of extreme Sy-type changes

extreme flux and spectral states: -- can reveal the nature of the inner accretion disk, -- the physics of matter under strong gravity, - offer a way of measuring BH spin, -- provide insight on the material expelled by the SMBH incl. strong outflows, feedback; -- route to discovery of rare new transients, TDEs, changing-look AGNs, SMBBHs, ...

Komossa+16,17

Intro: Narrow-Line Seyfert 1 galaxies

- NLS1s locate at "extreme end" of correlations (`EV1') between line/continuum properties of AGNs
 - small FWHM_{HB}, strong Fell/HB, weak [OIII/HB, strong CIV blueshifts, HB asym.
 - sometimes: steep X-spectra; some samples show Γ_x -FWHM_{HB} corr., others not at all
- low-mass BHs and high accretion rates
- important targets when addressing questions related to black hole growth, galaxy evolution and accretion physics.

Deep X-ray low-flux states: the NLS1 Mrk 335

- nearby, highly variable NLS1 galaxy
- has traditionally been a bright X-ray source
- deep X-ray low-state (factor >10 drop) seen with Swift in 2007
- since then:
 - deep low-state in 2013: XMM, Suzaku & NuStar follow-ups
 - rapid UV decline in 2015/16: HST & XMM-RGS follow-up

[Grupe + 07, 08, 12, Komossa+14,17, Gallo+15,18....]

deep low-state scenarios:

- reflection-dominated spectrum: low coronal height, above inner disk → strong light bending and blurring best-fit models require: most of the reflection originates from within a few r_g & high spin (+ additional warm absorption)
- partial covering absorption, unobscured at highstate, strongly absorbed at low-state (cf ~0.95, log N ~ 23.3)

Giant X-ray drop: the NLS1 WPVS007

- unique, giant-amplitude drop in its X-ray emission (factor ~400)
- its optical spectrum showed little/no changes from 1993-2012
- recent strong change in UV, into very low state: triggered HST observation
- Scenario: I.o.s. grazes edge of clumpy, dusty torus
 - clumps produce occultation event(s)
 - else: view through wind launched from edge of torus, r ~ 0.1-1pc

[Grupe+ 95, 07, 08, 13, Leighly+09, 15, Komossa+17]

Changing-look AGNs

- "Changing-look" (CL) phenomenon
 - rare cases, with the (opt) spectral type change within years.
 - Type $2 \iff$ Type 1.8/1.9 \iff Type 1.5 \iff Type 1 (turn-on & off)
- Cases in previous
 - e.g, Mark 1018, Mark 590, 3C390.3, NGC2617, NGC4151, SDSS J015957.64+003310.5, SDSSJ101152.98+544206.4, SDSS
 J155440.25+362952.0, HE1136-2304 (e.g, McElroy+16; Shappee+14; Shapovalova+10; LaMass+15; Parker+ 16; Runnoe+16; Gezari+2017)
 - 21 new CL AGNs from LAMOST (Yang+17)

- Studies in Ruan+15 and Macleod+16

Changing-look AGNs

- Why do we study CL AGNs?
 - a challenge of the unified model
 - host galaxies of luminous AGNs: essential for studying the coevolution of SMBH & its host

- Potential drivers
- variation of obscuration
- accelerating outflow
- TDE
- change in accretion rate

SDSS J141324.27+530527.0 (SBS 1411+533)

- Identified as a "Turn-on" QSO at Palomar Obs.
 - z~0.46
 - r=19.40 mag
- Spectroscopic obs
- **P200/DBSP**
- 2017/06/01
- 7×1200 s Exp

Type 2/1.9 Type 1.8 Type 1 (turn-on)

Aribitraty flux

- A new CL quasar (z = 0.456344 and M_{BH} ~5-9×10⁷M_o) with a "turn-on" type transition from Type-2/1.9 into Type-1 within a rest frame time scale of 1-10 years.
- Plausible driver: viscous radial inflow → change in accretion rate
- ✓ Inflow time scale Δ t~1-5 yr
- ✓ thermal instability time scale Δ t~3-4 yr
- ✓ mid-infrared brighten (Sheng+17; Yang+18)

Wang, Xu, & Wei, 2018

HE1136-2304

- discovered in high-state in XMMslew → XMM, NuSTAR, Swift & SALT quasi-sim. within 3d
- change of Sy1.9 into Sy1 (∆t =11yr)
- high amplitude of X-ray increase (x 30) accompanied by strong broad- line increase (x >4)
 - -- unlikely changes in large-scale extinction/torus
- potential driver: change in accretion rate ?
 - either BLR sees more photons - or cloud-formation conditions change (Nicastro+00, Elitzur+14)

Future Work

- importance of triggered observations, to catch the extreme states
 - deep X-ray low/high states
 - highest-amplitude outbursts and drops in AGNs
 - changing look AGNs
- multi-wavelength approach
- searches for new AGNs in extreme flux & spectral states, and rapid follow-ups at multiple wavebands
- science on galactic sources (Huali)

Thank you for your attention!