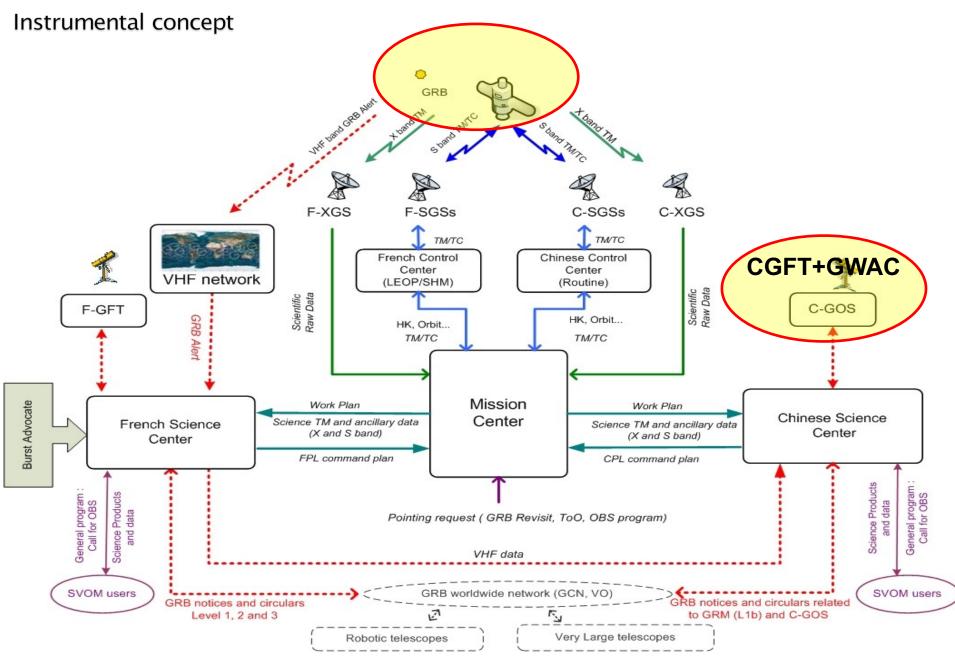
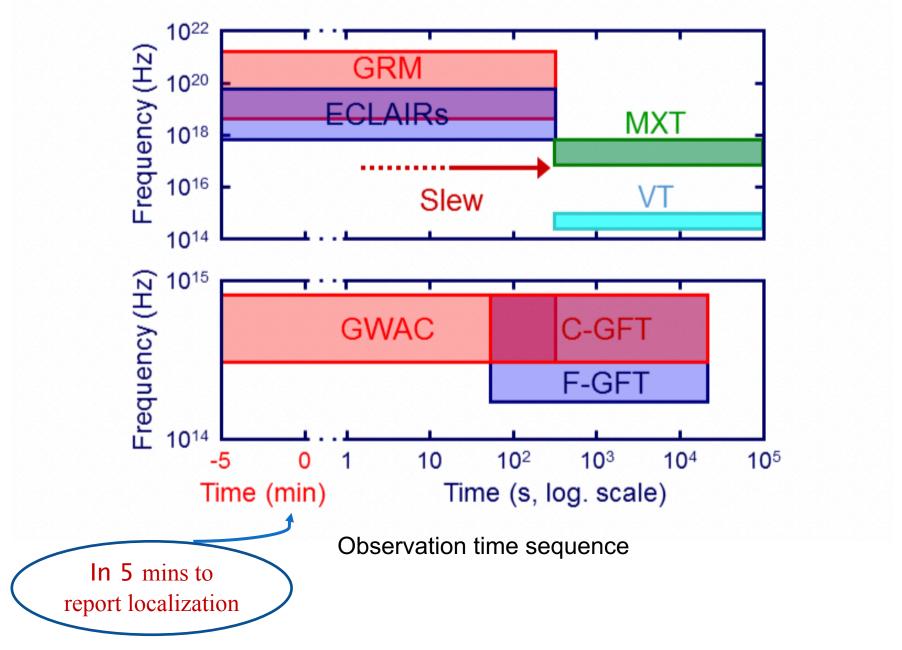
Current Status of C-GFT

(Chinese Ground Follow-up Telescope)

Chao WU


On behalf of SVOM@NAOC


2018.05.17 @Les Houches

Outlines

- Instrumental concept
- □ Scientific products of C–GFT
- □ Progress in new C–GFT
- Expected scientific performance
- □ Prepare for O3

Burst detected time=0, see white paper 2016.

Instrumental concept

• Main characteristics of CGFT (From requirements)

Parameter	Value
Energy range	400–9500 nm
Field of View	21' x 21'
Aperture(diameter)	1 m
Channels	3 channels of g,r,i
Detector	3 CCD camera mounted
Sensitivity (AB mag, 5 sigma)	Mag(r) = 19 @100s (new Moon)
Localization accuracy	0.5 arcsec
Observation rate	>20% burst triggered by ECLAIRs

2018.5.17 Les Houches

1. online products:

GRB (OT) position, magnitude, color index (redshift indicator), Finding Chart;

.OR. Upperlimit in case of no GRB afterglow detection

Note: There is not only one candidate of GRB/OT provided by CGFT since larger error box of ECLAIRs. Weight and position will be provided together.

2. Offline products:

Refined light curve, temporal slope, SED, photo-Z

Astrometric calibrated images of three channels in time series.

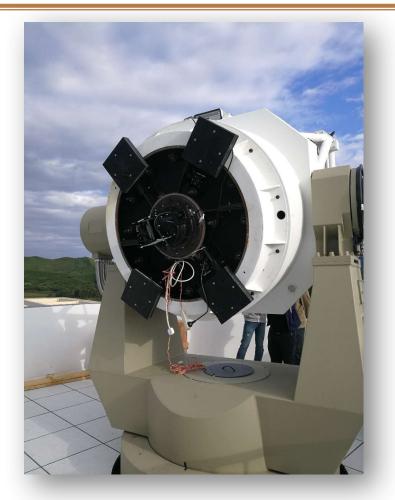
Instrumental concept

Modification of CGFT observation site
 The old one is occupied by quantum communication project.
 Requirements is same as before.

Old: @Xinglong observatory
~130 Km to Beijing

New: @Jilin observatory

• ~920 Km to Beijing

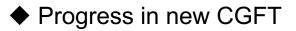

2018.5.17 Les Houches

Latitude. : 40 d 23 m 36s Altitude. : 960 m Longitude: 126d 19m 49.66s Latitude. : 43d 49m 27.76s Altitude. : 320 m

Cassegrain Focus

Primary Focus

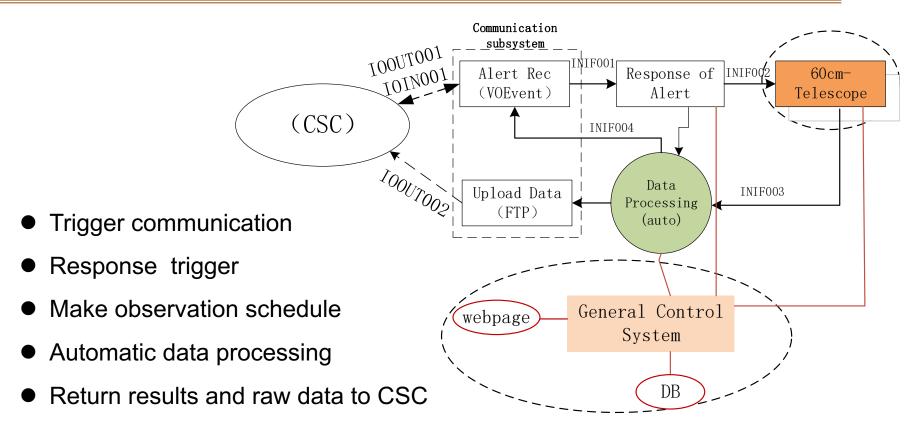
Aperture = 1.2 m



Instrumental concept

• Compare with Xinglong telescope

		Xinglong	Jilin	
Tel	aperture	1.0 m	1.2 m	
	3-channels (Cassegrain focus)	g,r,l 2kx2kCCD FOV=21'X21'	g,r,l 2kx2k CCD 21'X21'	
	Primary Focus	None	4kX4k CCD FOV=1.5degX1.5deg	
Site	seeing	Median ~1.5"	~same ?	
Site	Observation nights	60%	~same ?	
Available Observation time		Share with other project	Only SVOM	

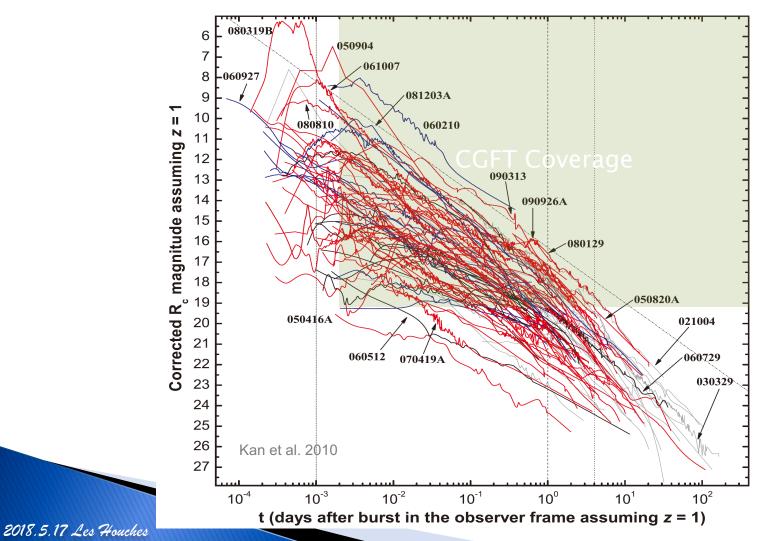


10

✓ The 3 channels : under development, expected to be mounted at the end of this year. M5 M4 Design of the 3 channels: finished review at March. \checkmark Robotic control system: under development, completed before Oct. 场镜 ✓ Primary focus Camera(4kx4k): start to り 分色镜1 adjustment observation at the end of this G波段镜组 month. R波段镜组 分色镜2 MЗ I波段镜组

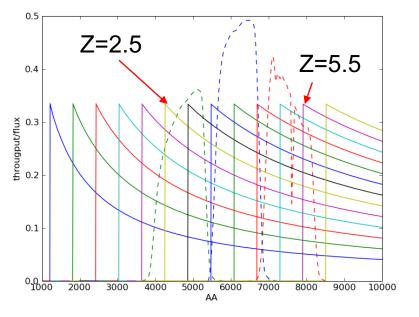
Svom

✓ C-GFT prototype data processing system : reviewed last July.

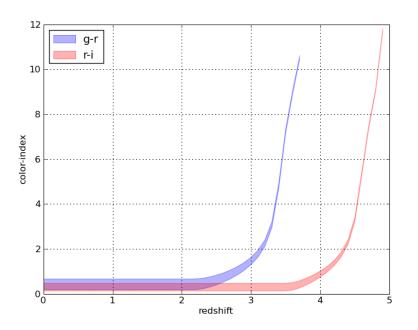


Test on communication between 60cm telescope@Xinglong and CSC@Beijing.

• C-GFT sensitivity in GRB afterglow obs.



Expected scientific performances



Redshift indicator measurement on CGFT

(simple estimation: details, refer to Kruhler et al. A&A, 2012)

GRB spectrum with index=-1

photoZ on GRB of index in (-1.4—0.2)

In-press at Living Reviews, now posted at <u>arXiv:1304.0670v5</u> :

Epoch		2015-2016	2016-2017	2018-2019	2020+	2024+	
Planned run duration		4 months	9 months	9 months 12 months		(per year)	
Expected burst range/Mpc LIGO Virgo KAGRA		LIGO	40-60	60 - 75	75-90	105	105
		Virgo	— 20-40 40		40-50	40 - 70	80
		_	_	_	—	100	
Expected BNS range/Mpc Virgo		LIGO	40-80	80-120	120 - 170	190	190
		Virgo	_	20 - 65	65-85	65-115	125
		KAGRA	_	_	_	—	140
Achieved BNS range/Mpc Vir		LIGO	60-80	60-100	_	—	_
		Virgo	_	25 - 30	_	_	_
		KAGRA	_	_	_	—	_
Estimated BNS detections		0.05 - 1	0.2 - 4.5	1-50	4-80	11 - 180	
Actual BNS detections		0	1	_	—	_	
	% within	5 deg ²	< 1	1-5	1-4	3-7	23 - 30
90% CR		20 deg^2	< 1	7-14	12-21	14-22	65-73
	median/deg ²		460-530	230 - 320	120 - 180	110 - 180	9-12
Searched area	% within	5 deg ²	4-6	15-21	20-26	23-29	62-67
		20 deg^2	14-17	33-41	42-50	44-52	87-90

Acceptable : ~80 fields, coverage 90% CR, (180 sqDeg)

See Nicolas's talk

2018.5.17 Les Houches

Prepare for O3: what can C-GFT do at O3?

• Compare with Swope (the first found optical counterpart of GW170817)

* Only consider the primary focus camera of C-GFT.

	Swope	C–GFT	
GW-localization	31deg ² @90% (GW170817)	180deg ² @90% (median)	
FOV	27.9'x27.8'	1.5degx1.5deg	
Aperture	1 m	1.2m	•••
Fields to cover localization	~143	~80	<u>.</u>

* C-GFT has advantages in GW optical counterpart search, but there are challenges to data processing.

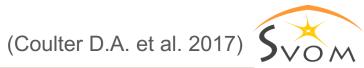


Table S1: Observation Schedule(Coulter D.A. et al. 2017)

Galaxy	R.A.	Decl.	Probability	Observation Number		umber
				Swope	LDSS-3	FourStar
NGC 4830	12:57:27.9	-19:41:28	0.086207	1	2	1
NGC 4970	13:07:33.7	-24:00:31	0.083333	11	3	9
NGC 4763	12:53:27.2	-17:00:18	0.077519	13	4	2
IC 3799	12:48:59.7	-14:23:56	0.073529	5	5	3
PGC 044234	12:57:00.5	-17:19:13	0.044248	2	6	4
NGC 4756	12:52:52.6	-15:24:48	0.037037	4	7	5
PGC 043424	12:50:04.7	-14:44:00	0.034014	5	8	6
ESO 575-G029	12:55:59.7	-19:16:07	0.028818	1	9	
ESO 508-G010	13:07:37.8	-23:34:43	0.027855	11	10	
PGC 043664	12:52:25.6	-15:31:02	0.026316	4	1	7
ESO 508-G019	13:09:51.7	-24:14:22	0.025773	10	11	
NGC 4993	13:09:47.7	-23:23:01	0.021463	9	12	11
IC 4197	13:08:04.3	-23:47:49	0.021368	11		
ESO 508-G024	13:10:45.9	-23:51:56	0.020243	12		

CGFT may find this early with its wide FOV.

Prepare for O3: what is needed to do for C-GFT in O3?

- ✓ Make optimized observation strategy: Pointing priority.
- ✓ Search candidates from large FOV fields: No reference.
- ✓ Robotic observation and automatic data processing: Fast & feasible.
- New telescope & new observation site: need time to adjust.
 Unexpected problems?
 - We have collaboration team: **GRANDMA** For details, please see Damien's presentation!

Expected to be ready for everything before the end of this year.

Thank you for your attention