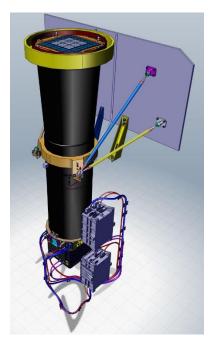


Current status of the Microchannel X-ray Telescope


Laura Gosset - CEA

Micro-channel X-ray Telescope

SVOM satellite

MXT Telescope

MXT = transmit the position to ground based telescopes in real time **Goal** = Observe GRBs and afterglows and localize them precisely

- Characteristics
 - ► Energy range : 0.2 10 keV
 - Field of view: 57 x 57 arcmin
 - Detector 256 x 256 pixels (75 μ m)
 - ► Integration time : 100 ms
- PSF MXT < PSF ECLAIRs</p>
 - ~ 6.5 arcmin vs 1 degree
- Localisation error
 - Calculation on board
 - MXT < 1 arcmin vs ECLAIRs < 12 arcmin</p>

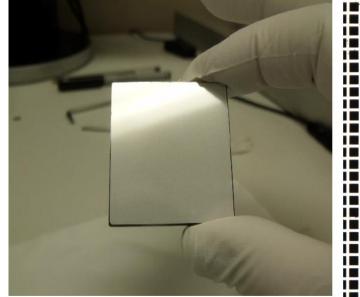
Third SVOM Scientific Workhop

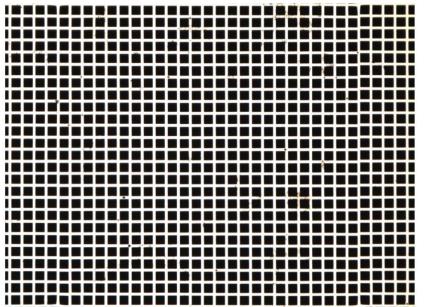
100

50

0

<mark>2</mark>

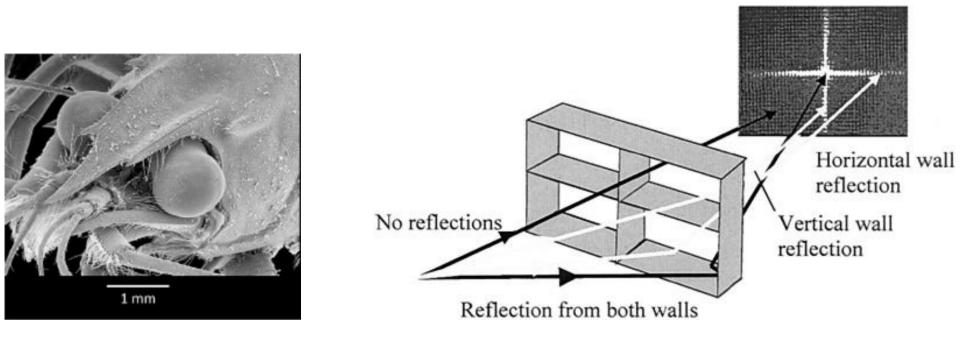

9 - 3


Optics configuration

- Flight Model (FM)
 - 25 MPOs of 1.2 and 2.4 mm
 - Focal length : 1.15 m

2A	2B	2C	2D	2E	
2273	2309	2282	2310	2130	
1.2 30	1.2 30	1.2 30	1.2 30	1.2 30	
2R	1A	1B	1C	2F	
2251	2324	2247	2299	2317	
1.2 30	2.4 60	2.4 60	2.4 60	1.2 30	
2Q	1H	1J	1D	2G	
2254	2232	2246	2285	2141	
1.2 30	2.4 60	2.4 60	2.4 60	1.2 30	
2P	1G	1F	1E	2H	
2180	2364	2173	2216	2283	
1.2 30	1.2 30 2.4 60		2.4 60	1.2 30	
2N	2M	2L	2K	2J	
2237			2431	2198	
1.2 30	1.2 30	1.2 30	1.2 30	1.2 30	
		-			
00	-50	0	50	10	

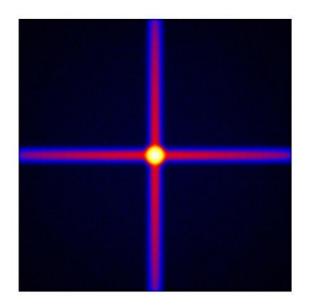
A real MPO



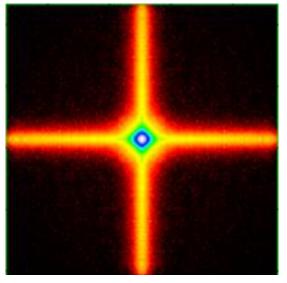
Laura Gosset – CEA

Third SVOM Scientific Workhop

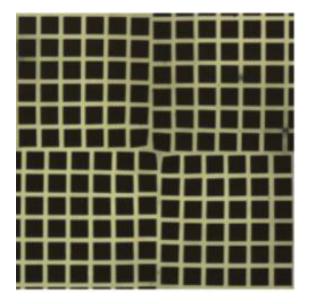
Lobster Eye optics


Lobster Eye pinciple 0 reflection = diffuse patch / 1 reflection = arms / 2 reflections = central spot

Third SVOM Scientific Workhop



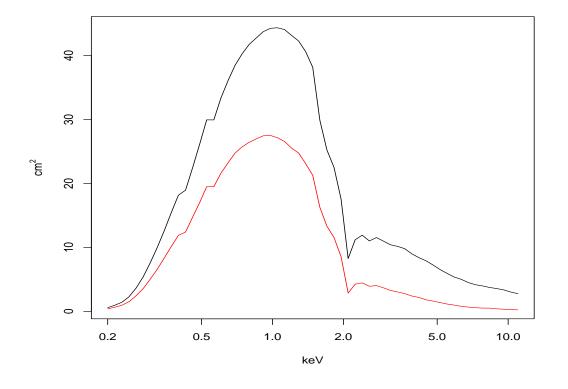
Point Spread Function

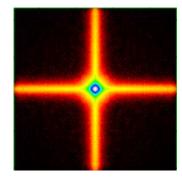

Ideal early PSF (Gaussian) Ray-tracing simulations

Real PSF(Lorentzian) Ray-tracing simulations including defects

MPOs defects

Leicester STM-MPO measurements

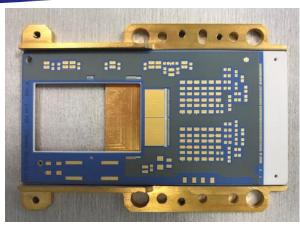

	мро	Thickness (mm)	Open area fraction	Rcur (average mm)		Efficiency	FWHM at MPO X-ray focus (old 2D Gaussian)		FWHM at MPO X-ray focus (old 1D FWHM)		FWHM at MPO X-ray focus (new 2D Lorentzian)		FWHM at MPO X-ray focus (new 1D FWHM)	
				Photonis	X-ray		mm	arcmin	mm	arcmin	mm	arcmin	mm	arcmin
Y	C001-A2	1.04	61.0	1745	1626	0.98	2.25	9.16	2.00	8.15	1.72	7.25	1.92	8.13
Y	C001-A4	1.05	60.8	1805	1861	0.93	2.57	9.49	2.16	7.97	2.02	7.69	2.08	7.93
Y	C001-A5	1.04	61.2	1774	1711	0.94	2.04	8.19	1.88	7.55	1.59	6.61	1.81	7.50
Y	C001-A6	1.05	61.0	1797	1764	0.88	2.22	8.48	1.99	7.69	1.81	7.25	2.07	8.30
Y	C001-A7	1.05	60.7	1806	1786	0.94	2.27	8.81	1.95	7.56	1.75	7.02	2.03	8.14
Y	C001-A8	1.05	61.1	1824	1873	0.96	2.28	8.42	1.96	7.23	1.76	6.71	1.93	7.36
YC	C001-A10	1.05	60.8	1717	1743	0.97	2.01	8.20	1.78	7.29	1.60	6.55	1.81	7.39
YC	C001-A11	1.05	60.2	1800	1839	0.95	2.19	8.20	1.72	6.46	1.72	6.66	1.83	7.08
Y	C001-D1	1.20	60.9	1899	1873	0.89	2.50	9.24	2.00	7.36	1.99	7.60	1.96	7.46
Y	C001-D2	1.20	60.7	1882	1839	0.92	2.77	10.40	2.18	8.19	2.17	8.40	2.32	9.01
Y	C001-D3	1.20	60.3	1878	1861	0.90	2.56	9.43	2.19	8.09	2.11	8.03	2.05	7.81
Y	C001-D5	1.20	60.7	1856	1839	0.89	2.62	9.80	2.14	8.01	2.01	7.78	2.20	8.53
Y	C001-C2	1.71	60.9	1904	1850	0.93	2.04	7.67	1.78	6.69	1.65	6.40	1.76	6.82
Y	C001-C3	1.71	60.3	1839	1820	0.85	2.53	9.65	2.39	9.12	1.94	7.64	2.35	9.26
Y	C001-C4	1.70	60.4	1891	1861	0.91	2.44	9.01	2.03	7.48	1.96	7.46	2.00	7.61
Y	C001-C5	1.70	60.8	1891	1854	0.99	2.16	8.11	1.90	7.12	1.72	6.66	1.86	7.21
Y	C001-B1	2.40	61.4	1875	1871	1.00	1.95	7.07	1.67	6.16	1.59	6.06	1.68	6.38
Y	соо1-в4	2.40	60.4	1878	1839	1.05	2.22	8.33	1.87	6.99	1.78	6.90	1.90	7.36
Y	C001-B5	2.40	61.4	1873	1861	1.00	2.39	8.81	2.13	7.87	1.87	7.12	2.18	8.30
Y	C001-B6	2.40	61.4	1890	1826	0.99	1.86	6.98	1.56	5.87	1.50	5.81	1.60	6.22
Y	C001-B7	2.40	60.9	1865	1861	0.93	2.42	8.94	2.21	8.16	1.89	7.18	2.15	8.18


Very good efficiency of MPOs

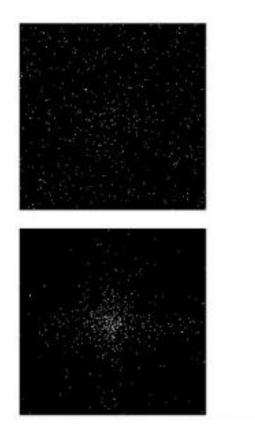
- Over-estimation of PSF FWHM because of Leicester beam line detector aging problems
 - « Corrected » values around 6.1 arcmin

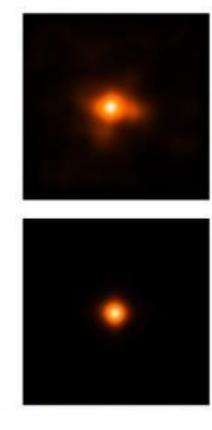
Effective area

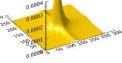



- Red = effective area with only the central spot of the PSF
- Black = effective area which include all the PSF (with arms)


Better results by including all the PSF !

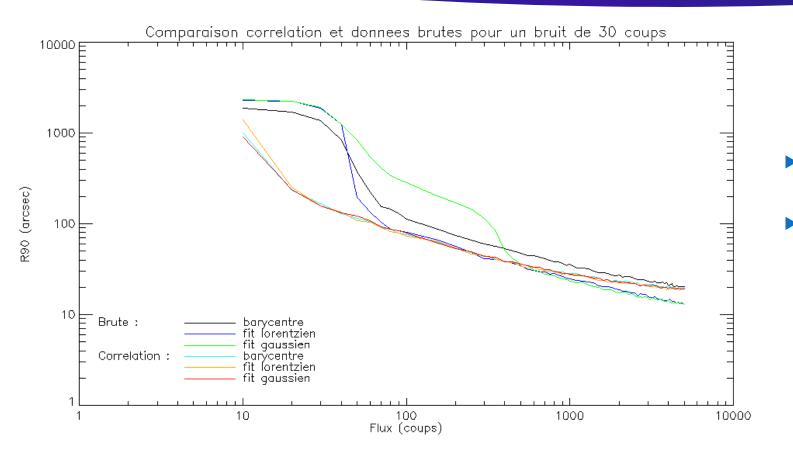

- The camera STM is built and will be delivered mid 2018
- The CAMEX have been bonded on the ceramic at MPE and are being tested at CEA
 - The detector will be mounted in summer 2018
- Inner coating of the shielding being optimized by GEANT4 simulations (2µm Au + 2µm Ni + 2µm Cu)
- UV filters will be tested at Soleil Synchrotron in June





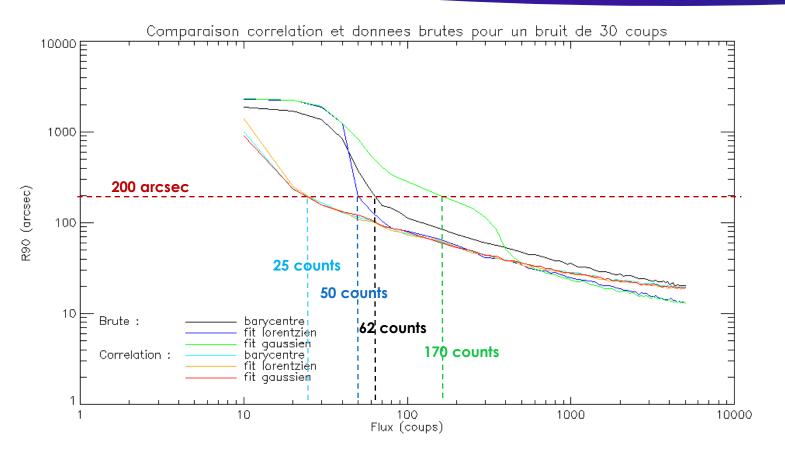
Cross-correlation method

<u>Goal</u> = find the pattern of the MXT PSF on the initial data



Q

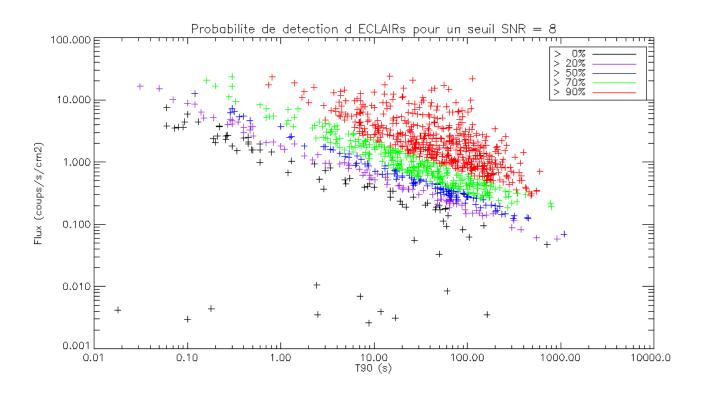
- ▶ Left : initial data on the detector
- Right : data after the crosscorrelation with the MXT psf
- Top : source = 50 counts / noise = 500 counts
- Bottom : source = 500 counts / noise = 50 counts


A faint source can be found by using the crosscorrelation method

Comparison of localization algorithms on initial and correlated data for a low noise

- At high fluxes (>500 source counts), a fit on initial data is better
- At low fluxes, a correlated method is better and have good results at high fluxes

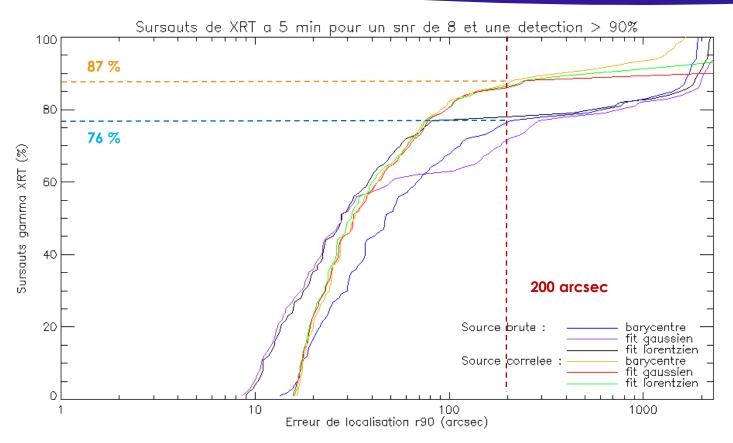
Comparison of localization algorithms on initial and correlated data for a low noise



Goal : estimate the minimal number of counts in order to have a localization

- With an error limit of 200 arcsec (MXT specifications)
 - ~ 20 30 counts for a correlated method
 - ~ 60 counts for barycenter on raw data
 - Advantage of barycenter = independent of the PSF shape

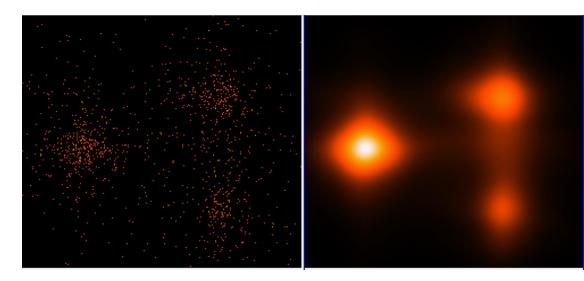
12

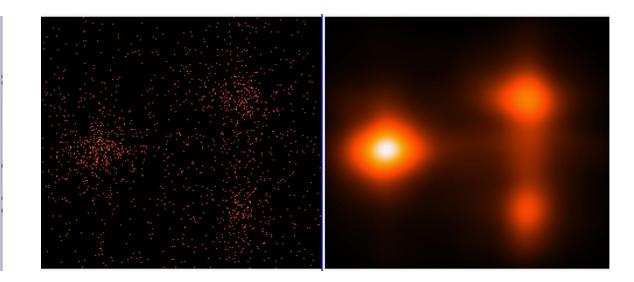

Localization algorithms of XRT database SNR = 8

- BAT database (Swift, end 2017)
 - Extrapolation to ECLAIRs energies
 - A.Gros calculated the probability of detection of ECLAIRs for different SNR thresholds
 - We estimated through simulations the probability of detection of MXT

13

Localization algorithms of XRT database SNR = 8


<u>Probability of detection of MXT :</u>


- For an error limit of 200 arcsec and a detection probability of ECLAIRs of 90 %
 - 76 % of GRBs for algorithms applied on raw data
 - 87 % of GRBs for algorithms applied on correlated data

Work in progress : cross-correlation for several sources

Goals of the study :

- ► If MXT observes a weak afterglow with a X ray source in a FoV
- Gravitationnal waves follow-up : observation few hours later => the searched source is not always the brightest in the FoV

500 counts of noise

50 counts of noise

Laura Gosset – CEA

Third SVOM Scientific Workhop

Conclusions

- All the MXT subsystems are progressing
 - Optical FM MPOs are already being produced at Photonis
- MXT will finish its phase C early 2019
- We are accumulating a good experience on Lobster-Eye imaging and real-time treatment (on board localization algorithms)
 - > The localization algorithms applied on correlated data are efficient
 - When we apply them to XRT database selected by ECLAIRs probability of detection, most of the GRBs are detected by correlation