

ECLAIRs instrument & scientific performances

Armelle BAJAT (3rd year PhD)

SVOM scientific Meeting

Les Houches, May 2018

ECLAIRs is the wide-field hard X-ray imager of the SVOM mission

References

- The Deep and Transient Universe in the SVOM Era: New Challenges and Opportunities - Scientific prospects of the SVOM mission, J. Wei, B. Cordier et al, 2016
- The x-/gamma-ray camera ECLAIRs for the gamma-ray burst mission SVOM,O.Godet, G.Nasser et al, 2014

ECLAIRs is the wide-field hard X-ray imager of the SVOM mission

Science Goals :

- Explore the physics of the violent explosions
 - Local (TGF, Solar Flares)
 - Galactic (BH, X-rays bursts)
 - Extragalactic (Long GRBs, short GRBs)
- 70-80 GRBs/year during 3 years
- Look for the electromagnetic counterparts of GW events
- Probe the demography of stellar masses black holes
- Use GRBs to explore distant galaxies

ECLAIRs is the wide-field hard X-ray imager of the SVOM mission

Science Goals :

- Explore the physics of the violent explosions
 - Local (TGF, Solar Flares)
 - Galactic (BH, X-rays bursts)
 - Extragalactic (Long GRBs, short GRBs)
- 70-80 GRBs/year during 3 years
- Look for the electromagnetic counterparts of GW events
- Probe the demography of stellar masses black holes
- Use GRBs to explore distant galaxies
- Detect transient X-ray sources autonomously
 - Detect hard X-ray photons
 - Measure their properties (time, energy, position, multiplicity)
 - Build images of the X-ray sky
 - \circ Look for new sources
 - First localizations < 13 arcmin

ECLAIRs is the wide-field hard X-ray imager of the SVOM mission

Science Goals :

- Explore the physics of the violent explosions
 - Local (TGF, Solar Flares)
 - Galactic (BH, X-rays bursts)
 - Extragalactic (Long GRBs, short GRBs)
- 70-80 GRBs/year during 3 years
- Look for the electromagnetic counterparts of GW events
- Probe the demography of stellar masses black holes
- Use GRBs to explore distant galaxies
- Detect transient X-ray sources autonomously
 - Detect hard X-ray photons
 - Measure their properties (time, energy, position, multiplicity)
 - Build images of the X-ray sky
 - \circ Look for new sources
 - First localizations < 13 arcmin
- VHF alerts messages, slew requests
- Always operating (Photon couting mode) except inside the SAA

Energy Range	4 - 150 keV	Defines the level of detector leakage current and electronic noise
Effective area	> 340 cm² @ 10-70 keV > 200 cm² @ 6 keV	Defines the level of absorbers above the detector
Energy resolution @ 60 keV	< 1.5 keV	Defines the performances of the detectors and the electronic noise
Dead Time	< 5%	For the brightest sources
Field of view	2.05 sr total	Defines the number of detectors in the plane and the design of the shielding
localization error box	< 13 arcmin (90% confidence level)	Impact on the field of views of MXT & VT

The scientific Performances : the Low Threshold

S.Schanne on behalf of the ECLAIRs collaboration, 2008

- Small detective area
- 4 keV threshold
- Detect softer GRB

Instrument : The mask

- 4 x 23 x 23 elements
- 54 x 54 cm²
- Ti(1 mm), Ta (0.6 mm), Ti (1mm)
- Total aperture : 40%
- Distance Mask-plane : 46 cm
- Opacity Energy < 80 keV

Mechanical studies

- Mechanical resistance
 simulations
- Cross (Ti, height : 15 mm)
- Design
- Manufacturing

Scientific studies

- New mask pattern
- Burst losses simulations
- Best performances selection
- Ghosts studies

Schottky CdTe detector

Instrument : The detection plane

UGTS

Prototype

1 complete Sector + 7 modules

1 module

High voltage grid

detector cerami

The detection plane

- 6400 pixels (80 x 80)
- 8 independent sectors

A sector

- 25 modules per sector
- Drived by an ELS

A module

- 32 pixels
- $4 \times 4 \times 1 \text{ mm}^3$
- CdTe Schottky detectors
- Asic low noise

Prototype

- 1 complete sector + 7 modules
- vacuum chamber + thermic regulation

source holder

radioactive sources (²⁴¹Am, ⁵⁵Fe or ⁵⁷Co)

Instrument : The Electronics

- Encode the energies of detected events
- Order and exchanges signal
- Supply the High Voltage
- Recover configurations
- Transmit events frame to UGTS

Scientific Trigger and Control Unit

2 algorithms to autonomously search for transient events

- Image trigger (image reconstruction on different time scale, energy bands...)
- Count rate trigger (couting rate excess)
 - sky image recontruction for the best excess
- search for new point sources

Instrument : Agenda

Methods

- BUILD A SPECTRAL RESPONSE MODEL
 - Monte Carlo Simulations (Geant4)
 - Spectrum simulation
 - energies: radiation matter interaction
 - physical process
 - Charges losses corrections
 - Electronic contribution
- SPECTRAL FITTING
 - \circ χ^2 minimization
 - extraction 6 parameters
 - characterization of each detector

Methods

- BUILD A SPECTRAL RESPONSE MODEL
 - Monte Carlo Simulations
 - Charges losses corrections
 - Electronic contribution
- SPECTRAL FITTING
 - \circ χ^2 minimization
 - extraction 6 parameters
 - characterization of each detectors

Parameters

→ Gain + Offset

- BUILD A SPECTRAL RESPONSE MODEL
 - Monte Carlo Simulations
 - Charges losses corrections
 - Electronic contribution
- SPECTRAL FITTING
 - \circ χ^2 minimization
 - extraction 6 parameters
 - characterization of each detectors

Parameters

- → Gain + Offset
- $\rightarrow \mu \tau_{e} + \mu \tau_{h}$ (lifetime, mobility)

- BUILD A SPECTRAL RESPONSE MODEL
 - Monte Carlo Simulations
 - Charges losses corrections
 - Electronic contribution
- SPECTRAL FITTING
 - \circ χ^2 minimization
 - extraction 6 parameters
 - characterization of each detectors

Parameters

- → Gain + Offset
- → $\mu \tau_{e} + \mu \tau_{h}$ (lifetime, mobility)
- → electronic Noise (FWHM)
- → Amplitude

Other parameter : Low-Energy Threshold

The scientific Performances : Low energy threshold

16

The scientific Performances : Calibration Related to the electronic noise Gain Amplitude 1.20 -200V 300 -300V 0 $T_p = 1.7 \ \mu s$ 1.15 -350V $T_p = 2.6 \ \mu s$ -400V 250 5 1.10 $T_p = 4.4 \ \mu s$ 10 (keV) 1.02 1.00 200 15 150 0.95 15 30 35 Counts 10 20 25 0 5 100 0.90 50 0.85 2 3 5 6 6 8 9 10 8 Tp (μs) Gain (Channel/keV) μτ_e, μτ_h 12 80 16 $T_p = 1.7 \ \mu s$ 70 $T_p = 2.6 \ \mu s$ 20 -H. ò 16 24 32 40 **]** T_p=4.4 μs Amplitudes 60 $\mu\tau_h(cm^2V^{-1})$ 50 10-4 40 30 20 T_p=1.7 μs 750 channels T_p=1.7 μs 10 T_p=1.7 μs HT = -300V 10-5 0.6 1.2 0.7 0.8 0.9 1.0 1.1 1.3 1.4 10-3 17

 $\mu au_e (cm^2 V^{-1})$

FWHM (keV)

The scientific Performances : Dead Time Bajat et al. (submitted 2018)

ln

Tools :

- Test Bench
- Simulator

Goals :

- Validate the readout and encoding process of data
- Building an analytical model of dead time
- Application to a burst light curve

Scientific requirements:
$$DT < 5\%$$
 for 12500 counts/s/sector
Results : $DT = 3.6\%$ (±0.1%) for 12500 counts/s/sector

$$(p) = \begin{cases} -0.05 \times N_{illu} + 3.95 - 0.97 \ln(\frac{ACD}{10\mu s}r) : N_{illu} > 12\\ -0.12 \times N_{illu} + 4.75 - 0.97 \ln(\frac{ACD}{10\mu s}r) : N_{illu} \le 12 \end{cases}$$

ECLAIRs: CONCLUSION

ECLAIRs performances

- Prototype gives very promising results
- Homogeneous detection plane
- Respects the scientific requirements
 - FWHM < 1.5 % @ 60 keV
 - Low threshold < 4keV
 - Dead Time < 5%

ECLAIRs advances

- Design stabilization
- Well filled agenda
- Many work to finish and deliver the FM
- Science : calibration on ground

- Development of tools for analysis
 - To characterize each detectors of the detection plane
 - To analyse the temporal and the spectral response
 - To study every part of the instrument
 - To estimate the best performances of the instrument

Thank you for your attention