GRBs and magnetars: observational signatures

MARIA GRAZIA BERNARDINI

LUPM, CNRS/IN2P3 INAF - Osservatorio Astronomico di Brera

3rd SVOM science workshop, May 13-18 2018, Les Houches (France)

- "canonical" X-ray light curve (steep-plateaunormal) in ~ 1/2 GRBs
- X-ray flares in ~ 1/3
 GRBs

not expected by standard model

- * "canonical" X-ray light curve (steep-plateaunormal) in ~ 1/2 GRBs
- X-ray flares in ~ 1/3
 GRBs

GRB standard model

Short GRBs

Long GRBs

GRB standard model

Short GRBs

Long GRBs

GRB standard model

Long GRBs

The role of the central engine

5

f

The role of the central engine

f

The role of the central engine

f

Observational imprints of the magnetar

In the plateau phase in X-rays of both LGRBs and SGRBs

Pre- and post-cursors in LGRBs and SGRBs

Observational imprints of the magnetar

Plateau phase in X-rays of both LGRBs and SGRBs

weight set to a set to a

Pre- and post-cursors in LGRBs and SGRBs

- plateau phase in the X-ray afterglow of LGRBs and SGRBs
- energy injection into the afterglow lasting ~ hours

Dai & Lu 1998 Zhang & Meszaros 2001 Corsi & Meszaros 2009 Lyons et al. 2010 Dall'Osso et al. 2011

Metzger et al. 2011 Bernardini et al. 2012 Rowlinson et al. 2013, 2014 Lu & Zhang 2014 Lu et al. 2015

5

- plateau phase in the X-ray afterglow of LGRBs and SGRBs
- energy injection into the afterglow lasting ~ hours
- typical decay ~ t^{-1.2} but occasionally very sharp drop

Dai & Lu 1998 Zhang & Meszaros 2001 Corsi & Meszaros 2009 Lyons et al. 2010 Dall'Osso et al. 2011 Metzger et al. 2011 Bernardini et al. 2012 Rowlinson et al. 2013, 2014 Lu & Zhang 2014 Lu et al. 2015

Rowlinson et al. 2013

- plateau phase in the X-ray afterglow of LGRBs and SGRBs
- energy injection into the afterglow lasting ~ hours
- typical decay ~ t^{-1.2} but
 occasionally very sharp drop
- correlations between the plateau properties and the prompt emission

Dainotti et al. 2008, 2010, 2013, 2015

Dai & Lu 1998 Zhang & Meszaros 2001 Corsi & Meszaros 2009 Lyons et al. 2010 Dall'Osso et al. 2011

 magnetar spin-down power reproduce the plateau features

Dai & Lu 1998 Zhang & Meszaros 2001 Corsi & Meszaros 2009 Lyons et al. 2010 Dall'Osso et al. 2011

magnetar spin-down power reproduce the plateau features

•external or internal plateau: long-lived magnetar or collapse to BH

Dai & Lu 1998 Zhang & Meszaros 2001 Corsi & Meszaros 2009 Lyons et al. 2010 Dall'Osso et al. 2011

- magnetar spin-down power reproduce the plateau features
- •external or internal
 plateau: long-lived magnetar
 or collapse to BH

 magnetar spin-down power reproduce the plateau features

•external or internal plateau: long-lived magnetar or collapse to BH

Luminosity-duration correlation implied by the model

Dai & Lu 1998 Zhang & Meszaros 2001 Corsi & Meszaros 2009 Lyons et al. 2010 Dall'Osso et al. 2011

Observational imprints of the magnetar

In the plateau phase in X-rays of both LGRBs and SGRBs

weight state with the second state of the

Pre- and post-cursors in LGRBs and SGRBs

Extended Emission in SGRBs

- delayed onset of EE hard spike, soft tail
- Iower peak but duration ~ 100 s
- larger fluence than the main event

Lazzati et al. 2001 Norris & Bonnell 2006

Extended Emission in SGRBs

•EE + late time X-rays: rotational powered wind

Metzger et al. 2008

- E: propeller (material ejected by centrifugal forces)
- Iate X-rays: rotational powered wind
- different mechanisms for different features

Gompertz et al. 2014

Observational imprints of the magnetar

In the plateau phase in X-rays of both LGRBs and SGRBs

pre- and post-cursors in LGRBs and SGRBs

Precursors in GRBs

Emission episodes **PRIOR TO** the main prompt emission of ~10% of LGRBs and SGRBs:

- quiescent time ~ T₉₀
- multiple precursors
- negligible or comparable energies
- similar properties w.r.t. the main prompt event
- Koshut et al. 1995 Lazzati 2005 Ramirez-Ruiz & Merloni 2001 Burlon et al. 2008, 2009 Troja et al., 2010 Bernardini et al. 2013

X-ray flares in GRBs

Emission episodes **AFTER** the main prompt emission in ~33% of **LGRBs and SGRBs**:

- + t_{pk} usually ≤ 1000 s, but also at late times
- multiple flares
- + negligible or comparable energies ("giant" flares)
- + flares and prompt pulses have likely the same origin

Chincarini et al., 2007, 2010 Margutti et al., 2010, 2011, 2012 Bernardini et al., 2011

The GRB prompt emission activity

How to switch on and off a GRB?

The GRB prompt emission activity

How to switch on and off a GRB? Prompt emission powered by accretion onto the magnetar

Accreting magnetars as source of GRB power

Accreting magnetars as source of GRB power

Intermittent prompt emission activity

The end of the Prompt Emission

Testing the model with Swift data

1) derive **B** and **P** from Swift X-ray observations

Bernardini et al.. 2013

 $E(t) = \frac{L_i}{t^{k'}} \int_{t_0}^t \frac{t^{k'}}{(1+at)^2} + E_o\left(\frac{t_o}{t}\right)^{k'}$

Dall'Osso et al. 2011

tr $a \sim B^2/P^2$ $L_i \sim B^2/P^4$ Q $\langle B \rangle = 4x10^{15} G$ $\langle P \rangle = 3.06 ms$

Testing the model with Swift data

2) use the **B** and **P** from X-ray observations to test the accretion scenario for **GRBs** with precursors and with giant flares

Swift BAT6 complete sample

Bernardini et al., 2013

Fall-back accretion onto magnetars

 GRB powered only by the magnetar rotational energy through a wind heated by neutrinos driven by the proto-magnetar

magnetised ultra-relativistic outflow

 accretion allows for more complex time evolution of the spin-down power, possibly also for time gaps in the light curve

Effects of accretion:

additional source of energy

stimates from the late X-ray emission

Metzger et al., 2018

Can magnetars power all GRBs?

Magnetars have a **limited** energy budget

- ➡ SGRBs ok
- ➡ LGRBs often above limit
- accretion: further energy supplier
- + true $E_{\gamma} < E_{iso}$ due to collimation

Margutti et al., 2013

Can magnetars power all GRBs?

Magnetars have a limited energy budget

- ➡ SGRBs ok
- LGRBs often above limit
- accretion: further energy supplier
- + true $E_{\gamma} < E_{iso}$ due to collimation
- sufficient to energise the accompanying SN

Mazzali et al., 2014

several LGRBs intrinsically > 10⁵³ erg

Possible solution: magnetars & BHs

Distinctive features expected in the X-ray afterglow:

A direct look into the central engine: GWs

- + predicted signals from all phases of binary merger
- distinctive GW signals may help in distinguishing between magnetar and BH remnant after merger (e.g. Giacomazzo & Perna 2012, 2013; Dall'Osso et al., 2015)
- + GW 170817/GRB 170817A not conclusive (clues for EM observations)

Conclusions

Observations point towards magnetars as plausible candidates as GRB central engines:

- Iate X-ray emission powered by the spin-down of the magnetar
- initial phase of accretion onto the magnetar possibly present during the prompt phase

Are all GRBs powered by magnetars? Not likely but still the **majority are consistent with being powered by magnetars**

Indirect evidences from GRB observations. Possible
direct proof from GW detection of SGRBs