Fermi and INTEGRAL observations of GW170817 / GRB 170817A

Frédéric Piron

Laboratoire Univers et Particules de Montpellier (CNRS / IN2P3)

Third SVOM Scientific Workshop Les Houches, May 13-18, 2018

- Fermi/GBM: onboard detection; localization; spectral analysis
- Fermi/LAT follow-up observations
- INTEGRAL/SPI-ACS detection and follow-up observations
- Constraints from GW and gamma-ray observations
 - Possible GRB physical scenarios
 - Revised estimate of joint detection rates

The Fermi observatory

Large Area Telescope (LAT)

- Large field of view (2.4 sr @ 1 GeV)
- Sees the entire sky every 3 hours
- 20 MeV to >300 GeV
- Onboard and ground burst triggers
- Localization, spectroscopy

Gamma-ray Burst Monitor (GBM)

- Sees the entire unocculted sky (>9.5 sr)
- 8 keV to 40 MeV
- 12 Nal detectors (8 keV to 1 MeV)
 - Onboard trigger, onboard and ground localizations, spectroscopy
- 2 BGO detectors (150 keV to 40 MeV)
 - Spectroscopy

GBM timeline (1/2)

12:41:06.474598	0	GBM Trigger Time T0: End of 0.256 s data interval with GBM rate increase
12:41:06.477006	2.4 ms	GBM Triggered: Autonomously detected in-orbit by the Fermi GBM flight software
12:41:20	14 s	Public Fermi GBM GCN Notice sent
12:41:31	25 s	Public Fermi GBM GCN Notice: Automatic location from GBM flight software. 97% probability GRB.
12:41:44	38 s	Public Fermi GBM GCN Notice: More accurate automatic location by ground software
13:21:42	40.5 min	First LIGO GCN Circular. GW candidate near time of Fermi GBM trigger (Essick et al. 2017)
13:26:36	44.9 min	Public Fermi GBM GCN Notice: More accurate human-guided localization

GBM timeline (2/2)

13:47:37	1.1 hr	LVC GCN Circular reporting localization and consistency of GBM signal with a weak short GRB (Connaughton et al. 2017)
13:57:47	1.3 hr	LVC GCN Circular. INTEGRAL/SPI- ACS routine follow-up search detects transient coincident with the GBM trigger. (V. Savchenko et al. 2017)
20:00:07	7.3 hr	Public Fermi GBM Circular establishing GRB name, with standard GBM analysis (von Kienlin et al. 2017)
17/08/18 01:05:23	12 hr	LVC GCN Circular. optical transient detected. (Coulter et al. 2017)

GBM detection

Detector	Angle (°)	Comment		
NaI 0	63			
NaI 1	39	Good geometry		
NaI 2	15	Good geometry		
NaI 3	86			
NaI 4	101			
NaI 5	42	Good geometry		
NaI 6	104	blocked by spacecraft		
NaI 7	130	blocked by spacecraft		
NaI 8	167	blocked by spacecraft		
NaI 9	86	blocked by LAT radiator		
NaI 10	78	blocked by LAT radiator		
NaI 11	138	blocked by LAT radiator		
BGO 0	44	Good geometry		
BGO 1	136	blocked 1		

- In 320 ms, 5 (3) Nals above 3σ (5σ):
 3.41σ, 3.57σ, 5.63σ, 5.67σ, 6.34σ
- Three other trigger algs above threshold (all in 50-300 keV)
 - 256 ms (other phasing, 5.16σ)
 - 512 ms (6.25σ)
 - 1024 ms (4.52σ)
- If 30% less bright, the GRB would have been still detected

- Scans 28 combinations of timescales and energy ranges
- Requires two or more Nal detectors above 4.5σ: here Nal 1, 2, 5
- Detection: 256 ms, 50-300 keV, 4.82σ in the second brightest detector (Nal 2)

GBM localization

Figure 3. GBM and HLV initial and final localizations. The original GBM human-in-the-loop localization (50% and 90% regions) is shown with purple dashed contours, and the original BAYESTAR skymap (90% region) is shown with a green dashed contour. The targeted search localization and the LALInference HLV skymap are the corresponding solid contours. The inset shows a close-up of the GBM localization and the position of the the optical transient candidate (black star)

- HLV initial map: 50% (90%) credible region spanning 9 (31) square deg
- Final GBM map: 50% (90%) credible region spanning ~350 (~1100) square deg
- Fermi-INTEGRAL IPN annulus consistent with GBM localization and HLV map
- Unambiguous GW170817 / GRB 170817A association: P_{temporal} x P_{spatial} = 5×10⁻⁸ (5.3σ)

GBM standard analysis (1/2)

- GBM has triggered on >2000 GRBs, including ~40 short GRBs per year
- GRB 170817A is an ordinary short GRB
- At the ~40% fluence percentile for GBM short GRBs

F. Piron – Les Houches, 05/14/2018

GBM standard analysis (2/2)

- T90 = 2.0 ± 0.5 s
 - defined as the time interval over which 90% of the burst fluence between 50–300 keV is accumulated
 - duration extends beyond the main emission pulse due to the soft component
- 73% probability that the GRB belongs to the short class

GBM light curves

F. Piron – Les Houches, 05/14/2018

GBM detailed analysis (1/2)

- Main pulse
 - ~0.5 s duration, from T0-0.320 s to T0+0.256 s
 - Best fit with cutoff power law, aka "Comptonized": Epeak = $185 \pm 62 \text{ keV}$, $\alpha = -0.62 \pm 0.40$
- Soft tail
 - ~ ~1.1 s duration, from T0+0.832 s to T0+1.984 s
 - Well fit with Black Body spectrum: 10.3 ± 1.5 keV

GBM detailed analysis (2/2)

Time Range (s)	Model	E _{peak} (keV)	Index	kT (keV)	Energy Flux $(10^{-7} \text{ erg s}^{-1} \text{ cm}^{-2})$	Energy Fluence $(10^{-7} \text{ erg cm}^{-2})$
			S	Standard Analysi	s	
-0.192:0.064 -0.128:-0.064	Comptonized Comptonized	$\begin{array}{c} 215\pm54\\ 229\pm78 \end{array}$	$\begin{array}{c} 0.14 \pm 0.59 \\ 0.85 \pm 1.38 \end{array}$		$5.5 \pm 1.2 \\ 7.3 \pm 2.5$	$1.4 \pm 0.3 \\ 0.5 \pm 0.2$
]	Detailed Analysi	S	
-0.320:0.256 0.832:1.984	Comptonized Blackbody	185 ± 62 	-0.62 ± 0.40	 10.3 ± 1.5	$3.1 \pm 0.7 \\ 0.53 \pm 0.10$	$1.8 \pm 0.4 \\ 0.61 \pm 0.12$

Main pulse (cutoff PL)

Soft tail (BB)

F. Piron – Les Houches, 05/14/2018

Orbital path and South Atlantic Anomaly boundaries

F. Piron – Les Houches, 05/14/2018

LAT observation of GRB 170817A

• LAT pointing after exiting SAA (T0+1153 s)

GRB 170817A and other Fermi GRBs

- LAT detects 1–2 SGRBs / yr (~5% of all GBM-detected SGRBs)
- LAT sensitivity decreases significantly wih increasing boresight angle
- Lowest fluence bursts are only detected by the LAT when they occur close to the instrument boresight
- Initial position of GRB 170817A was outside the LAT field of view

- Flux UL from T0+1153 s to T0+2027 s
- Flux UL above the expected temporally-extended emission from LAT-detected short GRBs
- Luminosity UL (above 100 MeV) ~10⁴⁴ erg/s
- To be compared with the brightest LAT short GRB 090510 at T0+1153 s: 4×10⁴⁹ erg/s
- Observations at earlier time of a more typical short GRB will be crucial

LAT observations within two weeks

The INTEGRAL observatory

- INTErnational Gamma-Ray Astrophysics Laboratory
 - Launched in Oct. 2002 (ESA M2 mission)
 - Combines imaging and spectroscopy
- SPI spectrometer: emphasis on spectroscopy, 16° FoV
 - Coded mask + 19 high-purity Ge detectors (85 K)
- IBIS imager: emphasis on imaging, 9°x9° FoV
 - Coded mask + 2 layers of pixel detectors:
 ISGRI (CdTe) and PICsIT (CsI)
- X-ray monitor JEM-X
 - 3-35 keV, 4.8° FoV, localization <20"
- Optical monitor OMC
 - 5° FoV, localization <8"
- SPI-Anti-Coincidence Shield (SPI-ACS)
 - 512 kg of BGO scintillator
 - Viewed by 81 photomultipliers
 - Low threshold of ~80 keV
 - Effective area ~ 1m² for some directions and energies

INTEGRAL sensitivity during GW170817

- With this orientation, IBIS sensitivity much lower than that of SPI-ACS
- Orientation favorable to detect a signal from GRB 170817A, although not optimal

SPI-ACS detection

Final localizations

Figure 1. Final localizations. The 90% contour for the final sky-localization map from LIGO–Virgo is shown in green (LIGO Scientific Collaboration & Virgo Collaboration 2017a, 2017b, 2017c). The 90% GBM targeted search localization is overlaid in purple (Goldstein et al. 2017). The 90% annulus determined with *Fermi* and *INTEGRAL* timing information is shaded in gray (Svinkin et al. 2017). The zoomed inset also shows the position of the optical transient marked as a yellow star (Abbott et al. 2017f; Coulter et al. 2017a, 2017b). The axes are R.A. and decl. in the Equatorial coordinate system.

• The addition of the INTEGRAL observation reduces the final 90% GBM localization area

INTEGRAL follow-up pointed observations

Figure 7. Sensitivity levels (50%—solid line and 10%—dashed line, of the optimal sensitivity achieved for AT 2017gfo/SSS17a) of the complete IBIS, JEM-X, and SPI mosaics of the targeted *INTEGRAL* follow-up observation,

- A GRB at 40 Mpc could have produced bright hard X-ray afterglow
- INTEGRAL constrained new flux at least up to T0+20 ks

Time delays

- Delay of the start of GBM gammarays relative to the BNS merger (GW): 1.74 ± 0.05 s
 - From fitting the first GBM pulse

Implications for GRB physics

- IS & jet propagation time
- ES & deceleration radius
- Soft tail: photospheric emission?

Implications for fundamental physics

Speed of gravity

$$-3 \times 10^{-15} \le \Delta v / v_{EM} \le +7 \times 10^{-16}$$

- Improved constraints on LIV
- Test of the equivalence principle (propagation time of massless particles through gravitational field – i.e., of Milky Way)
- Probe of the neutron star equation of state

F. Piron – Les Houches, 05/14/2018

Energetics

• Eiso = (5.3 ± 1.0) × 10⁴⁶ erg

• Two orders of magnitude closer and 2 to 6 orders of magnitude less energetic than other SGRBs detected by the GBM

• Intrinsic brightness vs geometric effects (jet viewing angle)?

• Several possible explanations, including:

- Simple jet with uniform Lorentz factor and sharp edges
- Structured jet with non uniform Lorentz factor, observed off-axis
 - could explain dimness & marginally softness of the main pulse
- A cocoon of surrounding material may explain the low-energy emission after initial spike

- Evidence for a population of subluminous SGRBs → higher SGRB rate and higher joint GBM / LIGO-Virgo detection rate
- 2018–19 observing run: expect
 0.1 1.4 joint detections / yr (TBC)
 (GW & triggered GBM SGRBs)
- At design sensitivity of LIGO-Virgo:
 0.3 1.7 joint detections / yr
- The LIGO-Virgo horizon can be larger than the horizon of current GRB instruments
 - GBM could have seen GRB
 170817A up to ~80 Mpc
- Importance of the GBM subthreshold searches!

- BNS mergers are progenitors of (at least some) SGRBs
- GRB 170817A is nearby and slightly softer than typical GBM-triggered SGRBs
- Softer (BB) emission (during and?) after the initial emission peak
 - Near the detection limits of GBM
- Possible full model for GRB 170817A?
 - Off-axis emission from a top-hat jet providing the main emission episode
 - "Cocoon" emission arising from the jet's interaction with the surrounding torus that powers the jet
 - May be a common property that is missed for SGRBs at greater distances
- There likely exists a population of nearby weak events
 - Importance of sub-threshold searches with current gamma-ray space monitors
- Consequences for future missions like SVOM?

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L14 (14pp), 2017 October 20 © 2017. The American Astronomical Society. All rights reserved.

An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A

A. Goldstein , P. Veres , E. Burns^{3,17}, M. S. Briggs^{2,4}, R. Hamburg^{2,4}, D. Kocevski⁵, C. A. Wilson-Hodge⁵, R. D. Preece^{2,4}, S. Poolakkil^{2,4}, O. J. Roberts¹, C. M. Hui⁵, V. Connaughton¹, J. Racusin⁶, A. von Kienlin⁷, T. Dal Canton^{3,17}, N. Christensen^{8,9}, T. Littenberg⁵, K. Siellez¹⁰, L. Blackburn¹¹, J. Broida⁸, E. Bissaldi^{12,13}, W. H. Cleveland¹, M. H. Gibby¹⁴, M. Giles¹⁴, R. M. Kippen¹⁵, S. McBreen¹⁶, J. McEnery⁶, C. A. Meegan², W. S. Paciesas¹⁶, and M. Stanbro⁴

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L15 (8pp), 2017 October 20 © 2017. The American Astronomical Society. All rights reserved.

INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817

V. Savchenko 10, C. Ferrigno 10, E. Kuulkers², A. Bazzano 10, E. Bozzo 10, S. Brandt⁴, J. Chenevez 10, T. J.-L. Courvoisier 10, R. Diehl⁵, A. Domingo⁶, L. Hanlon 10, E. Jourdain 10, A. von Kienlin 10, P. Laurent^{9,10}, F. Lebrun⁹, A. Lutovinov^{11,12}, A. Martin-Çarrillo⁷, S. Mereghetti¹³, L. Natalucci³, J. Rodi³, J.-P. Roques⁸, R. Sunyaev^{11,14}, and P. Ubertini³

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L13 (27pp), 2017 October 20 © 2017. The American Astronomical Society.

OPEN ACCESS

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

LIGO Scientific Collaboration and Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL

https://doi.org/10.3847/2041-8213/aa8f94

https://doi.org/10.3847/2041-8213/aa920c

28

Backup

Time (UTC)	Relative	Comment	
12:41:06.474598	0	Trigger Time: End of 0.256 s interval containing statistically significant rate increase	
12:41:06.477006	+2.4 ms	Triggered: Autonomously detected in-orbit by the <i>Fermi-GBM</i> flight software	
12:41:20	+14 s	Fermi-GBM Alert Notice sent by the GCN system at NASA/GSFC	
12:41:31	+25 s	Automatic location from GBM flight software sent by the GCN: R.A. = 172.0, Decl. = -34.8 , err = 32.6 deg	
12:41:44	+38 s	More accurate automatic location by ground software sent by GCN R.A. = 186.6, Decl. = -48.8 , err = 17.4 deg	
13:26:36	+44.9 min	More accurate human-guided localization sent by GCN: R.A. = 176.8, Decl. = -39.8 , err = 11.6 deg	
13:47:37	+66.5 min	LVC GCN Circular reporting localization and consistency of signal with a weak short GRB (Connaughton et al. 2017)	
20:00:07	+7.3 hr	Public GCN Circular establishing GRB name and standard GBM analysis (von Kienlin et al. 2017)	
00:36:12 (next day)	+11.9 hr	LVC GCN Circular reporting updated spectral analysis, energetics, and association significance (Goldstein 2017)	

