FeynRules

Beyond the Standard Model phenomenology made easy.

Benjamin Fuks (IPHC Strasbourg)

In collaboration with N. Christensen (MSU), C. Duhr (UCL), FeynRules people & MadGraph people.

GDR Terascale LPSC Grenoble March 31, 2009

Motivation	FeynRules	Models	Summary-outlook
0000	000000	000000	O
Outline			

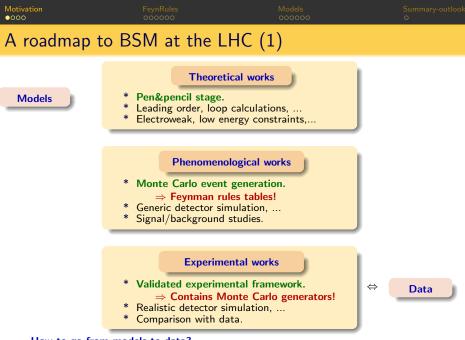
Motivation: a roadmap to BSM at the LHC

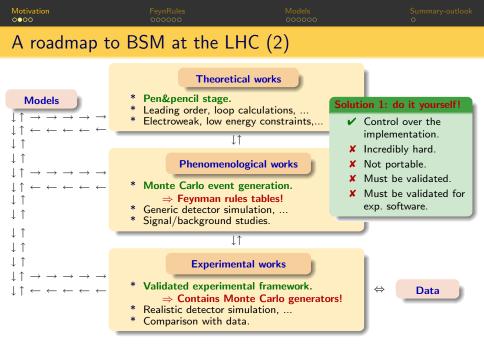
FeynRules

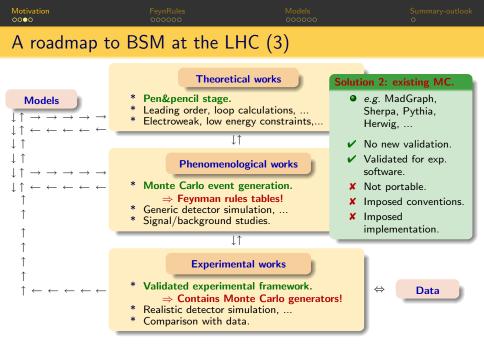
Model database and validation status

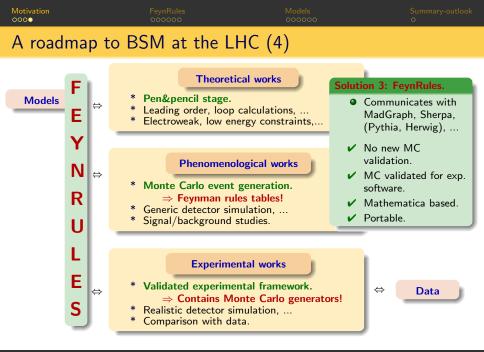
Motivation 0000		

Outline


Motivation: a roadmap to BSM at the LHC

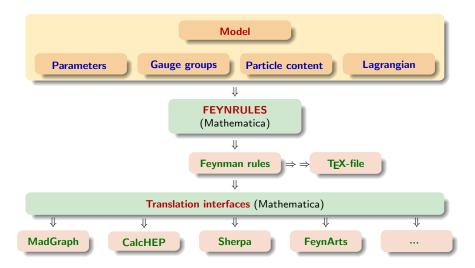






How to go from models to data?

	FeynRules 000000	
Outline		



Models

Example: QCD - Parameters

Parameters of the mode	el
aS == { Description Tex ParameterType BlockName OrderBlock InteractionOrder	-> 3,
<pre>gs == { Description TeX ComplexParameter ParameterType Value InteractionOrder</pre>	-> Internal, -> Sqrt[4 Pi aS],
ParameterName	-> "G"} * All the information needs * T _E X-form (for the T _E X-fill

- * Complex/real parameters.
- * External/internal parameters.

by the MC codes.

Example: QCD - Gauge group and gauge boson

The $SU(3)_C$ gauge gro	oup	
SU3C == {		
Abelian	->	False,
GaugeBoson	->	G,
StructureConstant	->	f,
DTerm	->	dSUN,
Representations	->	<pre>{T, Colour},</pre>
CouplingConstant	->	gs}

Gluon field definition

V[1] == {	
ClassName	-> G,
SelfConjugate	-> True,
Indices	-> Index[Gluon],
Mass	-> 0,
Width	-> 0,
ParticleName	-> "g",
PDG	-> 21,
PropagatorLabel	-> "G",
PropagatorType	-> C,
PropagatorArrow	-> None}

- * Gauge boson definition.
- * Gauge group definition.
- * Association of a coupling constant.
- * Definition of the structure functions.
- * Definition of the representations.

Models

Example: QCD - Quark fields

The quark fields			

F[1] == {	
ClassName	-> q,
ClassMembers	-> {d, u, s, c, b, t},
FlavorIndex	-> Flavour,
SelfConjugate	-> False,
Indices	-> {Index[Flavour],Index[Colour]},
Mass	-> {MQ, MD, MU, MS, MC, MB, MT},
Width	-> {WQ, 0, 0, 0, 0, 0, WT},
ParticleName	-> {"d", "u", "s", "c", "b", "t"},
AntiParticleName	-> {"d~", "u~", "s~", "c~", "b~", "t~"},
PDG	-> {1, 2, 3, 4, 5, 6},
PropagatorLabel	-> {"q", "d", "u", "s", "c", "b", "t"},
PropagatorType	-> Straight,
PropagatorArrow	-> Forward} * Classes: implicit sums in the La

Classes: implicit sums in the Lagrangian.
 All the information needed by the MC codes.

Example: QCD - Lagrangian

The QCD Lagrangian

LQCD = -1/4 * FS[G, mu, nu, a] * FS[G, mu, nu, a] +

```
I*qbar.Ga[mu].del[q, mu] - MQ[f] * qbar[s,f,c].q[s,f,c] +
```

gs * G[mu,a] * qbar.Ga[mu].T[a].q

$$\mathcal{L}_{ ext{QCD}} = -rac{1}{4} G^a_{\mu
u} G^{a\mu
u} + \sum_f igg[ar{q}_f ig(i \partial \!\!\!/ - m_f + g_s G^a T^a ig) q_f igg],$$

where we are summing over the quark flavours.

* Gluon strength tensor: automatically defined with the gauge group.

* Implicit summations \Rightarrow easy debugging.

Example: QCD - Results

Results - let us do (some) phenomenology!

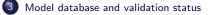
```
FeynmanRules[LQCD, FlavorExpand->False]
```

Vertex 1 Particle 1 : Vector , G Particle 2 : Dirac , q[†] Particle 3 : Dirac , q Vertex:

```
ig_{s} \gamma_{s_{2},s_{3}}^{\mu_{1}} \delta_{f_{2},f_{3}} T^{a}_{m_{2},m_{3}}
```

WriteFeynArtsOutput[LQCD] WriteCHOutput[LQCD] WriteMGOutput[LQCD] WriteSHOutput[LQCD]

Explicit flavour expansion: six vertices instead of one.


Motivation	FeynRules	Models	Summary-outlook
0000	000000	000000	O
Outline			

Motivation: a roadmap to BSM at the LHC

	Models ●00000	
Model database		

- Publicly available (FeynRules v1.2.5):
 - * The Standard Model (SM) [N. Christensen, C. Duhr].
 - * Higgs effective theory (large m_{top} approximation) [C. Duhr].
 - * The Three-Site Model [N. Christensen].
 - 5D $SU(2) \times SU(2) \times U(1)$ theory in a slice of Anti-deSitter space.
 - Gauge invariant higgsless model.
 - Heavy (\approx 400 GeV) and nearly degenerate extra gauge bosons.
 - SM-like plus new fermionic states.
 - * The Hill Model [P. Aquino, C. Duhr].
 - SM plus an additional scalar sector coupling only to the Higgs.
 - Two Higgs fields after mass matrix diagonalization.
- Soon publicly available:
 - * The general MSSM (with 105 free parameters) [BenjF].
 - * Minimal universal extra dimensions [P. Aquino].
 - * Effective QCD for the pseudoscalar nonet [C. Degrande].
 - * Four generations models with right-handed neutrinos [BenjF, M. Spannowsky].
 - * Left-right symmetric models [L. Basso].
 - * Little Higgs model [T. Figy].
 - * Effective quantum gravity [BenjF, C. Reuschle].
 - * Type-III See-Saw model [R. Franceschini].

	Models o●oooo	
A / 15 1		

Validation sheet

• FeynArts/FormCalc:

- * Use of the FeynRules version of the FeynArts model files.
- * Check of the FormCalc-produced formulas with litterature.
- * Used versions: FormCalc-5.4 and FormCalc-6.0.

MadGraph/MadEvent:

- * Comparison between (existing) stock and FeynRules model files.
- * Test of various 2 \rightarrow 2 and 2 \rightarrow 3 processes.
- * Used version: MadGraph-4.4.17.

• CalcHEP/CompHEP:

- * Comparison between (existing) stock and FeynRules model files.
- * Test of both Feynman and unitary gauges.
- * Test of various $2 \rightarrow 2$ and $2 \rightarrow 3$ processes.
- * Used version: CalcHEP-2.5.
- Sherpa:
 - * To be done...

Motivation	FeynRules	Models	Summary-outlook
0000	000000	oo●ooo	O

Example: validation status of the MSSM (1)

- Handmade vs. automated implementation.
 - * 2522 vertices, without the four-scalar interactions.
 - * More that 10000 vertices, with the four-scalar interactions !!!
- FeynArts/FormCalc: ongoing...
 - ✓ FormCalc-5.4: all $2 \rightarrow 2$ SUSY particle pair hadroproduction processes.
 - ✓ FormCalc-6.0: in the flavour conserving MSSM (cMSSM) limit.
 - FormCalc-6.0: almost there in the general MSSM.
- MadGraph/MadEvent (in the cMSSM limit):
 - * MG-Stock was validated by the CATPISS collaboration [Hagiwara et al. (2006)].
 - ✓ 320 decay widths.
 - ✓ 456 2 → 2 SUSY processes.
 - ✓ 2708 2 → 3 SUSY processes.

The signs and absolute values of all the vertices have been checked.

• CalcHEP/CompHEP (in the cMSSM): ongoing check for $2 \rightarrow 2$ processes.

* Some bugs found in the stock version!

FeynRules 000000

Models 000●00

Summary-outlook

Example: validation status of the MSSM (2)

Some MadGraph and CalcHEP results

Process	MG-FR	MG-Stock	CH-FR	CH-Stock	Result
e+,e->e+,e-	7.5203×10^{2}	7.5216×10^{2}	7.5137×10^{2}	7.5137×10^{2}	OK: 0.105086%
e+,e->vm,vm~	1.5268×10^{-3}	1.5285×10^{-3}	1.5261×10^{-3}	1.5262×10^{-3}	OK: 0.15714%
e+,e->t,t~	1.1098×10^{-2}	1.1101×10^{-2}	1.1108×10^{-2}	1.1114×10^{-2}	OK: 0.144066%
e+,e->d,d~	5.6391×10^{-3}	$5.6597 imes 10^{-3}$	5.6465×10^{-3}	$5.6465 imes 10^{-3}$	OK: 0.36464%
e+,e->W+,W-	2.8014×10^{-1}	2.801×10^{-1}	2.8008×10^{-1}	2.8009×10^{-1}	OK: 0.0214202
e+,e->Z,Z	1.535×10^{-2}	1.5347×10^{-2}	1.5347×10^{-2}	1.5347×10^{-2}	OK: 0.0195459
e+,e->Z,a	6.2902×10^{-2}	6.2901×10^{-2}	6.292×10^{-2}	6.292×10^{-2}	OK: 0.0302016
e+,e->s15-,s15+	3.2044×10^{-2}	3.2002×10^{-2}	3.2039×10^{-2}	3.2039×10^{-2}	OK: 0.131156%
e+,e->sl2-,sl2+	3.6401×10^{-2}	3.641×10^{-2}	3.64×10^{-2}	$3.64 imes 10^{-2}$	OK: 0.0274688
e+,e->s15-,s12+	2.0292×10^{-3}	2.0269×10^{-3}	2.0291×10^{-3}	2.0291×10^{-3}	OK: 0.113409%
e+,e->sl1-,sl1+	1.6061×10^{-3}	1.6061×10^{-3}	1.6054×10^{-3}	1.6054×10^{-3}	OK: 0.0435933
e+,e->sv3,sv3~	9.5578×10^{-2}	9.5567×10^{-2}	9.554×10^{-2}	9.5542×10^{-2}	OK: 0.039766%
e+,e->su4,su4~	2.9679×10^{-3}	2.9676×10^{-3}	2.9692×10^{-3}	2.9692×10^{-3}	OK: 0.0539011
e+,e->sul,sul~	1.9518×10^{-3}	1.9486×10^{-3}	1.9517×10^{-3}	1.9517×10^{-3}	OK: 0.164086%
e+,e->su6,su6~	2.2021×10^{-3}	2.2041×10^{-3}	2.202×10^{-3}	2.202×10^{-3}	OK: 0.0953224
e+,e->su1,su6~	$4.4196 imes 10^{-4}$	$4.4134 imes 10^{-4}$	$4.4155 imes 10^{-4}$	$4.4155 imes 10^{-4}$	OK: 0.140383%
e+,e->sd4,sd4~	4.9197×10^{-4}	4.926×10^{-4}	4.9192×10^{-4}	4.9192×10^{-4}	OK: 0.138138%
e+,e->sd6,sd6~	2.0014×10^{-3}	2.0012×10^{-3}	2.0016×10^{-3}	2.0016×10^{-3}	OK: 0.019986%
e+,e->sd1,sd2~	2.1502×10^{-4}	2.149×10^{-4}	2.1494×10^{-4}	2.1494×10^{-4}	OK: 0.0558243
e+,e->n1,n1	7.6112×10^{-3}	7.6075×10^{-3}	7.6077×10^{-3}	7.6076×10^{-3}	OK: 0.0486244
e+,e->n1,n2	2.7949×10^{-3}	2.792×10^{-3}	2.7942×10^{-3}	2.7943×10^{-3}	OK: 0.103814%
e+,e->n2,n3	4.1779×10^{-4}	4.1709×10^{-4}	4.17×10^{-4}	4.1701×10^{-4}	OK: 0.189269%
e+,e->n2,n4	7.5931×10^{-4}	7.5959×10^{-4}	7.5912×10^{-4}	7.5914×10^{-4}	OK: 0.0618946
e+,e->n4,n4	3.5319×10^{-5}	3.531×10^{-5}	3.5317×10^{-5}	3.5317×10^{-5}	OK: 0.0254853
e+,e->x1+,x1-	1.204×10^{-2}	1.2038×10^{-2}	1.2039×10^{-2}	1.2039×10^{-2}	OK: 0.0166127
e+,e->x2+,x2-	7.0411×10^{-3}	7.0479×10^{-3}	7.0494×10^{-3}	7.0494×10^{-3}	OK: 0.11781%
e+,e->Z,h1	7.6379×10^{-4}	7.6496×10^{-4}	7.6477×10^{-4}	7.6478×10^{-4}	OK: 0.153066%
e+,e->Z,h2	1.0024×10^{-7}	1.0007×10^{-7}	1.0017×10^{-7}	1.0017×10^{-7}	OK: 0.169737%
e+,e->h3,h1	9.9472×10^{-8}	9.9485×10^{-8}	9.9461×10^{-8}	9.9466×10^{-8}	OK: 0.0241272
e+,e->h3,h2	7.172×10^{-4}	7.1771×10^{-4}	7.177×10^{-4}	7.1771×10^{-4}	OK: 0.0710846
e+,e->H+,H-	1.7338×10^{-3}	1.7338×10^{-3}	1.7355×10^{-3}	1.7355×10^{-3}	OK: 0.0980025

	Models ooooooo	

Example: validation status of minimal UED model

MadGraph/MadEvent:

- * No MG-Stock.
- ✓ 118 2 → 2 processes.

✓ CalcHEP/CompHEP: 118 $2 \rightarrow 2$ processes.

- * Stock version: Datta, Kong and Matchev implementation.
- * One bug found in the stock version!

Some results

rocess	MG-FR	CH-FR	CH-Stock	Result
elR-,elR+>u,u-	1.107×10^{-1}	1.1094×10^{-1}	1.1094×10^{-1}	OK: 0.216567%
elR-,elR+>d,d-	3.277×10^{-2}	3.2795×10^{-2}	3.2795×10^{-2}	OK: 0.0762602%
elR-,elR+>e-,e+	2.5553×10^{-1}	2.5537×10^{-1}	2.5537×10^{-1}	OK: 0.0626346%
elR-,elR->e-,e-	1.0714	1.0714	1.0714	OK: 0.%
e1R-,m1R->e-,m-	6.5807×10^{-1}	6.5818×10^{-1}	6.5818×10^{-1}	OK: 0.0167142%
e1R-,m1R+>e-,m+	4.7857×10^{-1}	4.7682×10^{-1}	4.7682×10^{-1}	OK: 0.366343%
elR-,elR+>A,A	2.0803×10^{-1}	2.0788×10^{-1}	2.0788×10^{-1}	OK: 0.072131%
n11,n11->u,u-	1.6364×10^{-1}	1.6354×10^{-1}	1.6354×10^{-1}	OK: 0.0611284%
n11, n11~>Z,Z	4.1402×10^{-1}	4.1349×10^{-1}	4.1349×10^{-1}	OK: 0.128095%
n11,n11~>W+,W-	5.9018×10^{-1}	5.9009×10^{-1}	5.901×10^{-1}	OK: 0.0152507%
elL-,elL+>u,u~	2.3023×10^{-1}	2.2977×10^{-1}	2.2977×10^{-1}	OK: 0.2%
elL-,elL+>d,d~	1.4289×10^{-1}	1.4274×10^{-1}	1.4275×10^{-1}	OK: 0.105031%
elL-,elL+>e-,e+	2.5×10^{-1}	2.4978×10^{-1}	2.4978×10^{-1}	OK: 0.0880387%
e1L-, n11->d, u-	6.3986×10^{-1}	6.3998×10^{-1}	6.3999×10^{-1}	OK: 0.0203149%
e1L-,n11->e-,n1-	6.3118×10^{-1}	6.3132×10^{-1}	6.3133×10^{-1}	OK: 0.0237622%
elL-,nll>e-,nl	1.0519	1.0519	1.0519	OK: 0.%
B1, B1>u,u~	9.2638×10^{-2}	9.2548×10^{-2}	9.2548×10^{-2}	OK: 0.0971996%
B1, B1>d, d~	6.1392×10^{-3}	6.1347×10^{-3}	6.1347×10^{-3}	OK: 0.0733263%
B1, B1>e+,e-	1.8444×10^{-1}	1.8411×10^{-1}	1.8411×10^{-1}	OK: 0.17908%
Z1,Z1>u,u-	3.5574×10^{-1}	3.5556×10^{-1}	3.5556×10^{-1}	OK: 0.0506116%
z1, Z1>d, d-	3.566×10^{-1}	3.5556×10^{-1}	3.5556×10^{-1}	OK: 0.292069%
1,Z1>e+,e-	1.3429×10^{-1}	1.3409×10^{-1}	1.3409×10^{-1}	OK: 0.149042%
Z1,Z1>W-,W+	2.8571×10^{1}	2.8573×10^{1}	2.8573×10^{1}	OK: 0.00699986%

Example: validation status of the Three-Site model

MadGraph/MadEvent:

- * No MG-Stock.
- ✓ 224 2 → 2 processes.

✓ CalcHEP/CompHEP: 224 $2 \rightarrow 2$ processes.

* Stock version: N. Christensen's implementation.

ome resul	ts			
Process	MG-FR	CH-FR	CH-Stock	Result
-W+, W->W	W- 3,8293×10 ¹	3.8243×10^{1}	3.8218×10^{1}	OKI 0.19605%
-W-, W+>W+	.W- 3.8365×10 ¹	3.8244×10^{1}	3.8219×10^{1}	OK: 0.381281%
~W+,W->Z,	Z 4.6001×10 ¹	4.5986×10^{1}	4.5956×10^{1}	OK: 0.0978718%
~W-,W+>Z,	Z 4.5986×10 ¹	4.5986×10^{1}	4.5956×10^{1}	OK: 0.0652585%
~W+, W->A,	Z 1.6925×10 ¹	1.6891×10^{1}	1.688×10^{1}	OK: 0.266233%
~W-,W+>A,	Z 1.684×10^{1}	1.6891×10^{1}	1.688×10^{1}	OK: 0.302392%
~Z, Z>W+, W	8.2375×10 ¹	8.2402×10^{1}	8.2349×10^{1}	OK: 0.0643395%
~Z, A>W+, N	- 6.8543×10 ¹	6.871×10^{1}	6.8666×10^{1}	OK: 0.243346%
~W+, W->A,	A 6.0926 × 10 ⁻¹⁶	-1.2302×10^{-31}	3.1165×10^{-32}	Discrepancy: 200.%
~W-, W+>A,	A 6.098×10 ⁻¹⁶	-1.2302×10^{-31}	3.1165×10^{-32}	Discrepancy: 200.8
Process	MG-FR	CH-FR	CH-Stock	Result
u1,D1>W+	,G 6.4153×10 ⁻²	6.4112×10^{-2}	6.4091×10^{-2}	OK: 0.0966907%
u1,D1>W+	,~Z 3.8531×10 ⁻¹	3.8539×10^{-1}	3.8514×10^{-1}	OK: 0.0648904%
u1,D1>~W	I+,~Z 4.3576×10 ⁻¹	4.3594×10^{-1}	4.3566×10^{-1}	OK: 0.0642497%
~u1,D1>W	le,G 1.0137	1.0139	1.0136	OK: 0.0295931%
~u1,D1>~		1.1523	1.152	OK: 0.104112%
~u1,D1>~		2.8845×10^{-1}	2.8826×10^{-1}	OK: 0.249463%
u1,~D1>W		1.0139	1.0136	OK: 0.36437%
u1,~D1>~		1.1523	1.1519	OK: 0.208135%
u1,~D1>~		2.9273×10^{-1}	2.9254×10^{-1}	OK: 0.164108%
~u1,~D1>	W+,G 1.5625×10 ⁻¹	1.5605×10^{-1}	1.56×10^{-1}	OX: 0.160128%
~u1,~D1>		1.0358	1.0355	OK: 0.144921%
~u1,~D1>		2.7837	2.7819	OK: 0.0646831%
~u1,~D1>	~W+,~Z 2.5678	2.5706	2.5689	OK: 0.108983%

Outline			
Motivation	FeynRules	Models	Summary-outlook
0000	000000	000000	O

Summary: the philosophy of FeynRules

- * Theorist-friendly environment to develop new models. Mathematica-based.
- * Filling the gap between model building and collider phenomenology.
 1) Lagrangian → FeynRules → model files for your favourite Monte Carlo codes.
 2) Monte Carlo code → phenomenology.
- * Avoid separate implementations of a model on different programs. FeynRules does it for you!
- * Exploit the strengths of the different programs!
- * The validation of the existing models is ongoing.
 - * Contact us to add your favourite model.
 - * Contact us to add your favourite Monte Carlo tool.
 - * Website: http://feynrules.phys.ucl.ac.be .