Experiment SM Composites

Beyond the Minimal Composite Higgs Model

Ben Gripaios

CERN TH

30th March 2009

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

BMG, A. Pomarol, F. Riva, J. Serra, arXiv:0902.1483 [hep-ph]

Outline

Experimental facts about EWSB

Gross features, Precision Tests

Theory Models

- The Standard Model
- Composite models from SO(3) to SO(6)

Outline

Experimental facts about EWSB

Gross features, Precision Tests

Theory Models

- The Standard Model
- Composite models from SO(3) to SO(6)

Outline

Experimental facts about EWSB

Gross features, Precision Tests

Theory Models

- The Standard Model
- ► Composite models from *SO*(3) to *SO*(6)

Experiment SM Composites

Experimental facts about EWSB

EWSB: Gross features

- Weak interactions are gauge interactions symmetry
- Weak interactions are short range broken

Experiment SM Composites

・ロト・西ト・山下・ 山下・ 日・ うくの

EWSB: Gross features

So what is the symmetry and what is the symmetry breaking?

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

• At least
$$SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$$

EWSB: Precise features

•
$$\frac{m_Z}{m_W} \cos \theta_W \simeq 1 \implies T \sim 0$$

• $\frac{v^2}{\Lambda^2} Z_{\mu\nu} F^{\mu\nu} \implies S \sim 0$

Experiment SM Composites

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Experiment SM Composites

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

The Standard Model

The Standard Model

- Add a scalar field *H*, a $\mathbf{2}_{1/2}$ of $SU(2) \times U(1)_Y$
- Potential $V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The Standard Model

Is it a good model ...?

Renormalizable lagrangian

Make predictions to arbitrarily high scales

The Standard Model

Is it a good model ...?

- Renormalizable lagrangian
- Make predictions to arbitrarily high scales

Experiment SM Composites

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

SM: Gross Features

Is it a good model ...?

▶
$$v = \langle H \rangle \sim 246 GeV \implies SU(2) \times U(1)_Y \rightarrow U(1)_q$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

So gross features are reproduced.

Is it a good model ...?

So precise features are reproduced.

But is it such a good model? After all, we haven't yet

seen the Higgs, despite a lot of searching. $\mathbf{m}_h > 114 \text{ GeV}$

・ロト・西・・田・・田・・日・

But is it such a good model? After all, we haven't yet

seen the Higgs, despite a lot of searching.

▶ *m_h* > 114 GeV

Experiment SM Composites

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

But is it such a good model? After all, we haven't yet

seen the Higgs, despite a lot of searching.

▶ m_h > 114 GeV

Experiment SM Composites

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

But is it such a good model?

Combined Asymmetries

- solid: leptonic asymmetries, m_h ~ 50GeV
- dash: hadronic asymmetries, m_h ~ 500GeV
- dot-dash: non-asymmetry measurements, m_h ~ 50GeV
- ▶ combined, m_h ~ 85GeV, CL(14.1,7) = 0.05

Chanowitz, 0806.0890

But is it such a good model?

- Do we need renormalizability?
- What explains the hierarchy between v ~ 246 GeV and M_P ~ 10¹⁹ GeV?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Experiment SM Composites

▲□▶▲□▶▲□▶▲□▶ ■ のへぐ

Composite models from SO(3) to SO(6)

Composite models

Back to the beginning ... what do we really need?

・ロト・白 ・ キャー・ キャー ひょう

Composites: Gross structure

 $SU(2)_L \times U(1)_Y \to U(1)_{\textit{em}}$

- Need 3 Goldstone bosons
- Do not need to live in a Higgs doublet
- Effective lagrangian
- Non-renormalizable; but good up to $4\pi v \sim 3$ TeV.

Composites: Gross structure

 $\begin{aligned} SU(2)_L \times U(1)_Y &\to U(1)_{em} \\ \triangleright \ SU(2) &= SO(3) \\ \triangleright \ U(1) &= SO(2) \end{aligned}$

Like the Earth ...

Experiment SM Composites

Earth: $SO(3) \rightarrow SO(2)$ Like the Earth ...

W. Whiston, Astronomical Principles of Religion

• $\frac{m_Z}{m_W}\cos\theta_W\simeq 1 \implies T\sim 0$

- Custodial symmetry
- Replace $U(1)_Y$ by $SU(2)_R$
- $\blacktriangleright SU(2)_L \times SU(2)_R \rightarrow SU(2)_C$

Sikivie, Susskind, Voloshin, Zakharov

► SU(2) = SO(3) but $SU(2) \times SU(2) = SO(4)$

•
$$\frac{m_Z}{m_W}\cos\theta_W\simeq 1 \implies T\sim 0$$

- Custodial symmetry
- Replace $U(1)_Y$ by $SU(2)_R$
- $SU(2)_L \times SU(2)_R \rightarrow SU(2)_C$

Sikivie, Susskind, Voloshin, Zakharov

• SU(2) = SO(3) but $SU(2) \times SU(2) = SO(4)$

Experiment SM Composites

・ロト・日本・日本・日本・日本・日本

•
$$\frac{m_Z}{m_W}\cos\theta_W\simeq 1 \implies T\sim 0$$

- Custodial symmetry
- Replace $U(1)_Y$ by $SU(2)_R$
- $SU(2)_L \times SU(2)_R \rightarrow SU(2)_C$

Sikivie, Susskind, Voloshin, Zakharov

• SU(2) = SO(3) but $SU(2) \times SU(2) = SO(4)$

Experiment SM Composites

・ロト・日本・日本・日本・日本・日本

HyperEarth: $SO(4) \rightarrow SO(3)$

SU(2) = SO(3) but $SU(2) \times SU(2) = SO(4)$

Experiment SM Composites

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

- ► *T* ~ 0
- ▶ GBs a 3 of *SO*(3)

▶ But *S* ~ 0 as well.

No symmetry

Favours light Higgs with infinite cut-off ...

▶ But *S* ~ 0 as well.

No symmetry

Favours light Higgs with infinite cut-off ...

Favours light Higgs with infinite cut-off ...

... What about light Higgs with heavy cut-off?

Make the Higgs a Goldstone boson (nearly)

Georgi, Kaplan, Dugan

Favours light Higgs with infinite cut-off ...

... What about light Higgs with heavy cut-off?

Make the Higgs a Goldstone boson (nearly)

Georgi, Kaplan, Dugan

Experiment SM Composites

Favours light Higgs with infinite cut-off ...

... What about light Higgs with heavy cut-off?

Make the Higgs a Goldstone boson (nearly)

Georgi, Kaplan, Dugan

Experiment SM Composites

SuperEarth: $SO(5) \rightarrow SO(4)$

▶ $SO(5) \rightarrow SO(4)$

Agashe, Contino, Pomarol, hep-ph/0412089

- GBs a 4 of SO(4) or a (2,2) of $SU(2)_L \times SU(2)_R$
- Like the Higgs!
- SM interactions break SO(5)
- Higgs gets a small mass from top loop

SuperEarth: $SO(5) \rightarrow SO(4)$

▶ $SO(5) \rightarrow SO(4)$

Agashe, Contino, Pomarol, hep-ph/0412089

- GBs a 4 of SO(4) or a (2,2) of SU(2)_L × SU(2)_R
- Like the Higgs!
- SM interactions break SO(5)
- Higgs gets a small mass from top loop

SuperEarth: $SO(5) \rightarrow SO(4)$

▶ $SO(5) \rightarrow SO(4)$

Agashe, Contino, Pomarol, hep-ph/0412089

- ► GBs a 4 of SO(4) or a (2,2) of SU(2)_L × SU(2)_R
- Like the Higgs!
- SM interactions break SO(5)
- Higgs gets a small mass from top loop

Lastly, what about the global EW fit?

Prefers light Higgs

Can we hide Higgs from LEP?

Experiment SM Composites

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Lastly, what about the global EW fit?

- Prefers light Higgs
- Can we hide Higgs from LEP?

Experiment SM Composites

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

SuperDuperEarth: $SO(6) \rightarrow SO(5)$

Experiment SM Composites

BMG, A. Pomarol, F. Riva, J. Serra, arXiv:0902.1483 [hep-ph]

- GBs a 5 of SO(5) or a (2,2) ⊕ (1,1) of SU(2)_L × SU(2)_R
- Get a Higgs plus a singlet
- SM interactions break SO(6)

SuperDuperEarth: $SO(6) \rightarrow SO(5)$

Experiment SM Composites

► $SO(6) \rightarrow SO(5)$

BMG, A. Pomarol, F. Riva, J. Serra, arXiv:0902.1483 [hep-ph]

- ► GBs a 5 of SO(5) or a (2,2) ⊕ (1,1) of SU(2)_L × SU(2)_R
- Get a Higgs plus a singlet

SM interactions break SO(6)

SuperDuperEarth: $SO(6) \rightarrow SO(5)$

Experiment SM Composites

►
$$SO(6) \rightarrow SO(5)$$

BMG, A. Pomarol, F. Riva, J. Serra, arXiv:0902.1483 [hep-ph]

- ► GBs a 5 of SO(5) or a (2,2) ⊕ (1,1) of SU(2)_L × SU(2)_R
- Get a Higgs plus a singlet
- SM interactions break SO(6)

Hiding the Higgs

Higgs mass from top loop

- Singlet mass from any loop
- Singlet can be very light
- Singlet can decay in any channel
- e.g. Dominant Higgs decay $h \rightarrow \eta \eta \rightarrow 4\tau, 4c$
- LEP bound down to 86 Gev

Hiding the Higgs

- Higgs mass from top loop
- Singlet mass from any loop
- Singlet can be very light
- Singlet can decay in any channel
- e.g. Dominant Higgs decay $h \rightarrow \eta \eta \rightarrow 4\tau, 4c$

► LEP bound down to 86 Gev

Hiding the Higgs

- Higgs mass from top loop
- Singlet mass from any loop
- Singlet can be very light
- Singlet can decay in any channel
- e.g. Dominant Higgs decay $h \rightarrow \eta \eta \rightarrow 4\tau, 4c$
- LEP bound down to 86 Gev

CP-odd singlet: spontaneous CPV

Singlet can mediate FCNC $\implies m_{\eta} > 40 \text{ GeV}$

Experiment SM <u>Co</u>mposites

- Flavour-violating singlet decays, $\eta \rightarrow t\overline{c}, b\overline{s}$
- Stable singlet and DM
- Electroweak baryogenesis

- CP-odd singlet: spontaneous CPV
- Singlet can mediate FCNC $\implies m_{\eta} > 40 \text{ GeV}$

Experiment SM <u>Co</u>mposites

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへの

- Flavour-violating singlet decays, $\eta \rightarrow t\overline{c}, b\overline{s}$
- Stable singlet and DM
- Electroweak baryogenesis

- CP-odd singlet: spontaneous CPV
- Singlet can mediate FCNC $\implies m_{\eta} > 40 \text{ GeV}$

Experiment SM Composites

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへの

- Flavour-violating singlet decays, $\eta \rightarrow t\overline{c}, b\overline{s}$
- Stable singlet and DM
- Electroweak baryogenesis

- CP-odd singlet: spontaneous CPV
- Singlet can mediate FCNC $\implies m_{\eta} > 40 \text{ GeV}$

Experiment SM Composites

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへの

- Flavour-violating singlet decays, $\eta \rightarrow t\overline{c}, b\overline{s}$
- Stable singlet and DM
- Electroweak baryogenesis

- CP-odd singlet: spontaneous CPV
- Singlet can mediate FCNC $\implies m_{\eta} > 40 \text{ GeV}$

Experiment SM Composites

- Flavour-violating singlet decays, $\eta \rightarrow t\overline{c}, b\overline{s}$
- Stable singlet and DM
- Electroweak baryogenesis

Facts of EWSB

- Explained by SM?
- Explained by composite model?
- Implications for LHC ...

Facts of EWSB

Explained by SM?

Explained by composite model?

Implications for LHC ...

- Facts of EWSB
- Explained by SM?
- Explained by composite model?
- Implications for LHC ...

SM Composites

Experiment

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Facts of EWSB
- Explained by SM?
- Explained by composite model?
- Implications for LHC ...