

Search for a Higgs boson in Diboson Channels with CMS

Clémentine Broutin

LLR – Ecole Polytechnique

LHC: next years

Higgs boson production LLR École polytechnique F - 91128 PALAISEAU cedex

Inclusive production

Clémentine Broutin LLR -- Ecole Polytechnique

- Lower bound from LEP
 - M_H > 114.4 GeV
- SM unitarity bound
 - M_H < 780 GeV
- Consistency fit (95% CL) (knowing that M_H > 115 GeV)
 - M_H < 182 GeV

SM search mainly in the range: 115-200 GeV Other models suggest $M_H > 200$ GeV

Higgs boson mass range LLR École polytechnique F - 91128 PALAISEAU cedex

- Lower bound from LEP
 M_H > 114.4 GeV
- SM unitarity bound
 M_H < 780 GeV
- Consistency fit (95% CL) (knowing that $M_H > 115$ GeV)

M_H < 182 GeV

SM search mainly in the range: 115-200 GeV

Other models suggest $M_H > 200 \text{ GeV}$

31/03/2009

Clémentine Broutin LLR -- Ecole Polytechnique

Higgs boson decays

• Diboson decays

• $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

 $e^+e^-e^+e^-$, $\mu^+\mu^-\mu^+\mu^-$, $e^+e^-\mu^+\mu^-$ (x2)

■ H → WW^(*) → $\ell \nu \ell \nu$ e⁺e⁻ $\nu_{e}\overline{\nu}_{e}$, $\mu^{+}\mu^{-}\nu_{\mu}\overline{\nu}_{\mu}$, e⁺ $\mu^{-}\nu_{e}\overline{\nu}_{\mu}$, $\mu^{+}e^{-}\nu_{\mu}\overline{\nu}_{e}$

=> Detection of isolated electrons and muons

31/03/2009

Higgs boson decays

• Diboson decays

• $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

 $e^+e^-e^+e^-$, $\mu^+\mu^-\mu^+\mu^-$, $e^+e^-\mu^+\mu^-$ (x2)

Main backgrounds: tt̄, Zbb̄, ZZ

Fakes: Z+jets, W+jets, WZ+jets

 $\bullet H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$

 $e^+e^-\nu_e^-\overline{\nu}_e^-$, $\mu^+\mu^-\nu_\mu^-\overline{\nu}_\mu^-$, $e^+\mu^-\nu_e^-\overline{\nu}_\mu^-$, $\mu^+e^-\nu_\mu^-\overline{\nu}_e^-$

Main backgrounds: (Wt, WZ, ZZ), DY, tt, WW Fakes: W+jets, Z+jets

=> Detection of isolated electrons and muons

31/03/2009

Higgs boson decays

Diboson decays

 $\blacksquare H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

 $e^+e^-e^+e^-$, $\mu^+\mu^-\mu^+\mu^-$, $e^+e^-\mu^+\mu^-$ (x2)

Main backgrounds: tt, Zbb, ZZ Fakes: Z+jets, W+jets, WZ+jets

 $\blacksquare H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$

 $e^+e^-\nu_e\overline{\nu}_e$, $\mu^+\mu^-\nu_\mu\overline{\nu}_\mu$, $e^+\mu^-\nu_e\overline{\nu}_\mu$, $\mu^+e^-\nu_\mu\overline{\nu}_e$

Main backgrounds: (Wt, WZ, ZZ), DY, tt, WW Fakes: W+jets, Z+jets

Higgs boson masses considered for analyses:

115-200 GeV; 250 GeV

Lepton reconstruction

e/µ detection with CMS LLR École polytechnique F - 91128 PALAISEAU cedex

Clémentine Broutin

LLR -- Ecole Polytechnique

- Electrons
 - Track in the silicon tracker
 - Energy clusters in the ECAL

(Si tracker: $|\eta| < 2.5$, ECAL: $|\eta| < 3$)

- Muons
 - Inner (silicon tracker) and Outer (muon chambers) tracks (μ chambers: $|\eta| < 2.4$)

Efficiency control via $Z \rightarrow \ell \ell$ measurements

31/03/2009

- ECAL-driven reconstruction
 Si tracker: a lot of material budget
 => complicated tracks
 - energy deposit in the ECAL crystals
 - supercluster

(whole energy of the initial e in ECAL)

- Track seed (innermost layers of Si tracker)
- Track (Si tracker)

Preselection (Track - SC concordance)

=> creation of an electron candidate

Efficiency: 85% at p_T =10 GeV 90% at p_T =10 GeV, $|\eta| < 1.1$ 90% at p_T =35 GeV 95% at p_T =35 GeV, $|\eta| \le 1.1$

31/03/2009

Clémentine Broutin LLR -- Ecole Polytechnique

- Muon Chambers driven reconstruction (~ 95 - 99% efficiency except at crack level)
 - Fast trigger chambers (RPC)
 - < 10 ns time resolution -- set off the mechanism
 - High resolution tracking detectors (CSC, DT) reconstruction of the outer tracks
 - Combination with the inner detector
 - Small energy deposits in the ECAL and HCAL

WW^(*) and ZZ^(*) channels

WW^(*) channel strategy

- Preselection
 - exactly 2 leptons of opposite charge (WZ, ZZ)
 - Lower cuts for p_T , E_T^{miss} , m_ℓ , isolation (*tt*, *Wt*, *W+jets*, *DY*)
- Further selection (*tt̄, DY+jets*)
 - Central jet veto, angular correlation ($\Delta \Phi_{\ell\ell'}$), tightening

Cut sequence, or multivariate analysis

- Control of background rates from data
 - Relaxing/inverting some cuts (*tt*, *WW*)
 - « fake » probability from jet triggers (W+jets)

WW^(*) results

14 TeV

Exclusion at 95% CL for 150 GeV < M_H < 190 GeV

Multivariate analysis : Discovery at 5σ for 155 GeV < M_H < 175 GeV

WW^(*) results

- Exciting expectations already at 14 TeV, 1 fb⁻¹
- Expected results of projection at 200 pb⁻¹, 10 TeV
 ~ already comparable to current TeVatron results
- A very powerful channel, but E_T^{miss}
 => No identifiable peak
 Background control is crucial

ZZ^(*) channel strategy

- Preselection (*QCD*, *Z*/*W*+*jets*)
 - at least 2 pairs of opposite charge, matching flavour leptons
 - Lower cuts on $p_{T_{\ell}}^{\ell} m_{\ell+\ell}$, $m_{4\ell}$; loose isolation
 - Identification of the « Z pair » and the « Z* pair » [exactly 4*l*]
- Further selection (*Z+jets, tt, Zbb*)
 - isolation, $p_T^{\ell \text{ lowest}}$, impact parameter
 - Restrictions on the reconstructed « m_z » and « m_{z^*} »
- Systematics and control from data (ZZ)
 - Efficacity measurement with Z production
 - Normalization ZZ/Z
 - Random cone technique

ZZ^(*) channel results

260

WW^(*), ZZ^(*): other results LLR École polytechnique F - 91128 PALAISEAU cedex

- Relaxing flavour, charge cuts (ZZ^(*))
 - Control of background (bkg/data ratio...)
 - Finding more exotic signal (doubly charge Higgs, ...)

• Higgs decays into neutralinos (SUSY) $A^{0}, H^{0} \rightarrow 2\chi_{2}^{0} \rightarrow 4\ell 2\chi_{1}^{0}$

- Improves the sensitivity
- Correlations of systematics?
- 2 different analyses

different statistical models, different hypotheses on correlations

Bayesian exclusion limits

Modified Frequentist CL_s excl. limits

- Likelihood function $\mathcal{L}(\mathbf{r})$ normalized to 1
- r : s.t. $\sigma_{obs} = \sigma_b + r \sigma_s$
- partial integral = 0.95

- - log. likelihood ratios Q
 ratio CL_{sb} / CL_b < 0.05

Very similar results

31/03/2009

Clémentine Broutin LLR -- Ecole Polytechnique

Conclusion

- Expecting solid results at 14 TeV, 1 fb⁻¹
 - Possibility of exclusion (95% CL) on a main mass range
 - Already a possibility of discovery at 5σ around 2M_w
- First year at LHC: 10 TeV, 200 pb⁻¹ *
 - first exclusion results in the SM Higgs boson search
 - possibility of very interesting surprises

* Specific tuning at 10 TeV, low int. luminosity to come soon Including the cross section of the diboson background $gg \rightarrow ZZ$, $gg \rightarrow WW$.

Back-up Slides

Publications

H → WW^(*) → 4 ℓ at 14 TeV, 1fb⁻¹ CMS AN-2008/039 CMS PAS HIG-08-006

H → ZZ^(*) → 4 ℓ at 14 TeV, 1fb⁻¹ CMS AN-2008/050 CMS PAS HIG-08-003

Combined channels and projection to 10 TeV, 1fb⁻¹ CMS AN-2009/020

WW^(*) channel: angular correlation

10 TeV to 14 TeV ratio

Constraints on a SM Higgs mass

LLR -- Ecole Polytechnique

The CMS detector

