Search for a Cold Dark Matter Candidate with the CMS Detector at the LHC

Henning Flächer (CERN)

- Motivation and Evidence for Dark Matter
- Dark Matter at Colliders
- Missing Energy Signatures in Multi-Jet Events
 - robust analysis techniques
 - di-jets as a detailed example
 - data-driven background estimates
- Interpretation in the Context of SUSY
- Conclusions

Seminar Strasbourg (March 10th, 2009)

A Look at the Energy and Matter Content of the Universe

- Cosmic microwave background gives precise information about dark matter content of the universe
- WMAP 5 year result:

- relic dark matter density of the universe $\Omega_{\rm DM} h^2 = 0.110 \pm 0.006$
- Only 5% is made from baryonic matter, 23% from unknown "dark matter"
- Attractive explanation for Dark Matter:
 - new weakly interacting particle

Experimental Evidence for Dark Matter

- Zwicky1933
 - rotation frequencies of galaxies
 - high rotation speed at large radii suggests matter far from the center of the galaxy that is not emitting light
 - Dark matter within the galactic halo

- Bullet cluster
 - collision of two galaxy clusters
 - mass distribution shown in blue
 - determined with gravitational lensing
 - hot gas distribution in red
 - Most of the mass does not interact, only visible matter (gas) is slowed down

Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

Can we produce Dark Matter particles at Colliders?

- Dark Matter candidate is a weakly interacting massive particle (WIMP)
- Many New Physics Models provide viable dark matter candidates, e.g.
 - R-parity conserving Supersymmetry
 - minimal super gravity mSugra → neutralino is WIMP
 - Universal Extra Dimensions
 - Warped Extra Dimensions
 - Little Higgs Models
 - Technicolor Models

• Production of WIMP's in cascade decays of heavy new particles

- WIMP's escape the detector and remain undetected
- Leads to a missing energy signature

An Example from SUSY

e.g. gluino pair-production

lots of missing energy, many jets, and possibly leptons in the final state

Missing Energy: • from LSP

<u>Multi-Jet:</u>

• from cascade decay (gaugino)

Multi-Leptons:

 from decay of charginos and neutralinos 2009

March 10th,

...but signature is more general

pair production of new heavy particles

Missing Energy:

• Nwimp - end of the cascade

Multi-Jet:

 \bullet from decay of the Ns (possibly via heavy SM particles like top, W/Z)

Multi-Leptons:

• from decay of the N's

Model examples are Extra dimensions, Little Higgs, Technicolour, etc

2009

March 10th,

Sources for Missing Energy at LHC

- QCD multi-jet events
 - jet energy mis-measurements, calorimeter cracks etc.
- Neutrinos produced in W (mediated) decays
 - semi-leptonic decays of heavy quarks
 - tt events
 - bb + jets
 - W/Z + jets events
 - Diboson + jets production
- Unknown escaping particle

Missing Energy Measurement

- "Traditional" approach:
 - Calculate missing energy as negative vectorial sum of all calorimeter deposits
 - Susceptible to mismeasurements from, e.g.
 - Calorimetric noise (hot cells)
 - Cosmic rays
 - Beam-gas interactions
 - Beam-halo events
 - Difficult to understand in the early days of data taking
- Need for robust measurement techniques

Missing Energy from Tevatron during several cleanup stages:

Missing ET in MHT30 skim

IDEA:

infer missing energy from well measured objects by applying transverse energy/momentum conservation

Missing Energy in Multi-Jet Events

Case study: di-jet events

Seminar Strasbourg

March 10th, 2009

Di-jet Analysis

- New CMS study: PAS-SUS-08/005
 - CMS PTDR II focused on inclusive SUSY searches with ≥ 3 jets
- Motivated in addition by recent paper by
 - L. Randall, D.Tucker-Smith (Phys.Rev.Lett.101:221803,2008)
- Idea:
 - Squarks pair produced and directly decaying to quarks and neutralinos
 - Requires squarks lighter than gluino, so no cascade decays through gluinos
 - Possibility to constrain squark and neutralino masses with sufficient luminosity
- Event topology
 - Only two jets + missing energy
- Extendable to multi-jet events

Seminar Strasbourg

Seminar Strasbourg

Kinematics of signal and background events

- Exploit kinematics of the event
- Signal: 2 jets + 2 neutralinos (= missing E_T)
 - two jets, ~uncorrelated in ϕ and magnitude of E_{T}
- Background:
 - <u>QCD dijet events</u>
 - No real missing momentum,
 - transverse momentum conservation
 - jets back-to-back in $\,arphi$
 - E_T of jets equal in magnitude
 - $\underline{Z \rightarrow vv + jets events}$
 - Irreducible background due to real missing E_T
 - $W \rightarrow |v + jets events$
 - Leads to missing Et when lepton not reconstructed or out of acceptance

Event Selection

- Main variables of interest
 - Scalar sum of Jet p_T's:

ightarrow HT = $p_T^{Jet1} + p_T^{Jet2}$

- \succ Jet based missing E_T
 - > MHT = $(p_T^{Jet1} + p_T^{Jet2})$
- \succ but also p_T of a possible 3^{rd} jet
- $\succ \Delta \phi$ between the jets
- $\succ \alpha (\alpha_T)$ from 2 leading jets

- Trigger
 - di-jet trigger
 - two jets with pt > 150 GeV
- Preselection:
 - Jet Selection
 - 2 jets with pt > 50 GeV, $F_{em} < 0.9$
 - 3rd jet veto: pt < 50 GeV
 - Δφ(MHT,jet_{1,2,3}) > 0.3 rad
 - |η_{j1}|<2.5
 - Lepton veto's:
 - no e, μ with pt >10 GeV
- Full Selection
 - HT > 500 GeV
 - α (α_T) > 0.55
 - $[\Delta \phi < 2\pi/3]$

Accounting for

finite resolution

(not optimised)

Discriminating Variables

• Exploit kinematics of the event

> Define new variable α (Randall – Tucker-Smith):

$$\alpha = \frac{E_{T j2}}{M_{j1j2}} = \frac{E_{T j2}}{\sqrt{2E_1E_2(1 - \cos\theta)}}$$

Can be at most 0.5 for QCD, α < 0.5
 α > 0.5 implies missing momentum

> And transverse α_{T} :

$$\alpha_{T} = \frac{E_{T j2}}{M_{T j1j2}} = \frac{\sqrt{E_{T j2} / E_{T j1}}}{\sqrt{2(1 - \cos \Delta \varphi)}}$$

Exploits that for QCD jets need to be back-to-back and of equal magnitude
 For QCD dijets α = 0.5

Analysis does not rely on calorimetric MET, MHT inferred from 2 jets

⇒ well suited for early data

Signal & Background yields

Expected event yields for 1fb⁻¹

Selection cut	QCD	tŦ,₩,Ζ	$Z \to \nu \bar{\nu}$	LM1
Trigger	$1.1 imes10^8$	147892	1807	25772
Preselection	$3.4 imes10^7$	9820	878	2408
$\mathrm{HT} > 500\mathrm{GeV}$	$3.2 imes 10^6$	2404	243	1784
$\alpha > 0.55$	0	7.2	19.7	227.6
$\alpha_{\rm T} > 0.55$	0	19.9	58.2	439.6
$\Delta \phi_{j1,j2} < 2\pi/3$	0	18.7	57.2	432.4

=> Signal/Background = 5.6

•Variation of jet energy scale and resolution

>10% gaussian smearing of jet p_T 's and of 0.1 rad of ϕ measurement >Scaling of jet energy by ± 5%

>Scaling of jet energy by $\pm 3\%$ for endcap/forward (η >1.4)

- Smearing has only small influence (~3%)
- Scaling changes effective HT cut
- Stable S/B for all variations!

A closer look at SUSY yields

• CMS SUSY benchmark points

Sample	mo	m1/2	A ₀	tan β	$sign(\mu)$	σ NLO	(LO)	lightest <i>q</i>	$\tilde{\chi}_1^0$
-	(GeV)	(GeV)		V	0	(pb)	(pb)	(GeV)	(GeV)
LM1	60	250	0	10	+	54.86	(43.28)	$410(\tilde{t}_1)$	97
LM2	185	350	0	35	+	9.41	(7.27)	$582(\tilde{t}_1)$	141
LM3	330	240	0	20	+	45.47	(34.20)	$446 (\tilde{t}_1)$	94
LM4	210	285	0	10	+	25.11	(19.43)	$483 (\tilde{t}_1)$	112

 Reminder: desired topology is 2 squarks decaying to squarks and 2 neutralinos (LSPs)

0

Seminar Strasbourg

Sample	Eve	ents	<i>q̃ q̃</i> (invisible)	<i>q̃ q̃</i> (other)	<i>q̃ ĝ̃</i>	ĝĝ	other	For comparison:
LM1		432	39%	22%	34%	3%	1%	
LM2		132	46%	33%	18%	0%	2%	Z→vv : 57
LM3		138	69%	17%	12%	0%	2%	W/Z: 19
LM4		195	49%	10%	36%	3%	1%	Total: 76

- Dominated by squark-squark, but not only:
 - Squark gluino contribution, where gluino decays to squark+quark
 - In LM1: small mass difference between gluino and squark => low p_T 3rd jet

Production process	$p_T^{j3} < 30 \mathrm{GeV}$	$p_T^{j3} < 50 \mathrm{GeV}$	$p_T^{j3} < 70 \mathrm{GeV}$
<i>q̃ q̃</i>	80%	61%	51%
<i>q̃ ĝ</i>	18%	34%	44%
Ĩ Ĩ	1%	3%	5%

• Indeed observe increase in squark-gluino contribution when relaxing 3rd jet veto

Di-jet Analysis

Data-driven background estimation

March 10th, 2009

Background Studies

- LHC data in explores a new energy regime
 - Monte Carlo simulations should not be taken at face value
 - develop data-driven techniques
 - identify data control samples
- Two main sources of background:
- QCD
 - Seems to be under control but huge cross-section
 - MC uncertainties due to higher order QCD effects

• Z→vv

- represents an irreducible background
- two jets + real missing E_T
- Ideally study $Z{\rightarrow}\mu\mu$ events but not enough statistics in the early days
- Other control samples:
- W + Jets
- Photon + Jets as shown in CMS-AN 36/2008

Central Production of Heavy Objects

- Idea: define signal enriched and depleted regions by splitting data sample in events with first jet in barrel and forward region
 - > SUSY jets are more central
 - > Use ratio of events $R_a = \alpha_T > 0.55 / \alpha_T < 0.55$ in

(signal depleted) forward η region to predict background in (signal enriched) barrel region.

Df Heavy ObjectsSee also: Background Modeling in New Physics Searches
Using Forward Events at LHC.V. Pavlunin, D. Stuart, Phys.Rev.D78:035012,2008.Pre-selection (no η cut) + HT > 500 Gev events/fb⁻¹ **10**⁵ QCD SUSY LM1 **10**⁴ Ζ→νν 10³ W→vI.Z→II.top 10² 10 **CMS** preliminary 10⁻¹ -4 -2 2 0 R = C/D: assumed to be constant over η Semin and nearly signal free also: constant for all background contributions individually Then, background in A can be obtained as: A = B * R

 \rightarrow Measure R α_{T} in 2.5 < $|\eta|$ < 3.0 region.

Test Background Estimation from Data

 \mathcal{O}

Semir

• As HT loosened $|\eta|_1$ dependence gets flatter

=> Clear indication that at HT > 500 GeV signal is present

Background estimation from data (II)

Variation of 3rd jet p_T

Idea:

dilute signal by increasing background contribution Loosen cut on 3rd jet p_T to create missing E_T => tail in $\alpha[\alpha_T]$

Test if $R\alpha_T$ is stable Slope should be observed when signal contribution becomes sizable

 \Rightarrow Slope is observed for hard enough jet veto

Semir

2009

Ļ,

Data Driven Background Estimation via Control samples

An illustrative example: $Z \rightarrow vv+jets$ Irreducible background for Jets+E^{mis} search

Data-driven strategy:

• define control samples and understand their strength and weaknesses:

N

March 10th

Data Driven Background Estimations

An illustrative example: $Z \rightarrow vv+jets$ Irreducible background for Jets+ E_t^{mis} search

Data-driven strategy:

• define control samples and understand their strength and weaknesses:

Z→µµ+jets

Strength:

• very clean, easy to select **Weakness:**

low statistic: factor 6
 suppressed w.r.t. to Z →vv

Seminar Strasbourg

00

a

March 10th

Data Driven Background Estimations

An illustrative example: $Z \rightarrow vv+jets$ Irreducible background for Jets+ E_t^{mis} search

Data-driven strategy:

• define control samples and understand their strength and weaknesses:

Z→µµ+jets

Strength:

• very clean, easy to select **Weakness:**

low statistic: factor 6
 suppressed w.r.t. to Z →vv

ν

W→µv+jets

Strength:

- larger statistic Weakness:
- not so clean, SM and signal contamination

March 10th, 2009

E, mis

Seminar Strasbourg

Data Driven Background Estimations

An illustrative example: $Z \rightarrow vv+jets$ Irreducible background for Jets+ E_t^{mis} search

Data driven strategy:

 define control samples and understand their strength and weaknesses:

Z→ll+jets

Strength:

• very clean, easy to select **Weakness:**

• low statistic: factor 6 suppressed wrt. to Z $\rightarrow vv$

W→lv+jets

Strength:

- larger statistic
 Weakness:
- not so clean, SM and signal contamination

γ+jets

00

1 1

March 1

Seminar St

E, mis

Strength:

- large stat, clean for high E_γ
 Weakness:
- not clean for E_v<100 GeV,
- possible theo. issues for normalization (u. investigation)

Seminar Strasbourg

γ+jets: Estimate Z to invisible

<u>y+jets selection & properties:</u>

- E_y>150 GeV
- \rightarrow clean sample: S/B>20
- \rightarrow ratio σ [Z+jet]/ σ [γ +jet] constant

 γ +jets: Strategy:

- remove γ from the event:
 - $\rightarrow \gamma$ becomes E_T^{mis}
- take $\sigma[Z+jet]/\sigma[\gamma+jet]$ for E_ $_{\!\gamma}\!\!>\!\!200$ GeV from MC or measure in data

Missing Energy in Multi-Jet Events

From di-jet to n-jet events

March 10th, 2009

Extending the search to n-jets

Extend the search to signal events like:

$$pp \rightarrow \tilde{g}\tilde{q} \rightarrow \tilde{q}q\tilde{N}q \rightarrow q\tilde{N}q\tilde{N}q$$

The approach we have taken: combine n-jets into a pseudo-dijet system and apply $\Delta \Phi$, $\alpha_{\rm T}$, etc.

Conserved QCD-like three jet event

Questions:

- How should one choose **which jets to combine**? i.e. for n=4, {X,XXX} or {XX,XX}? {1,234} or {14,23}?
- How should we **merge the jets** into a pseudo-jet (bearing in mind that QCD is still back-to-back and balanced)

Extending the search to n-jets

March 10th, 2009

Semi

- Choose following approach:
- Maximise p_T balance of pseudo-jets (minimise ΔE_T)
 - trying to recreate original di-jet
- Only consider transverse components of jets

$$E_{t(kl)} = E_{t(k)} + E_{t(l)}; \ p_{x(kl)} = p_{x(k)} + p_{x(l)}; \ p_{y(kl)} = p_{y(k)} + p_{y(l)}$$

Selection method purely based on $E_{\rm T}$ measurements, and not angular information or event shape

Alternative methods possible - to be studied

March 10th, 2009

Seminar Strasbourg

Robustness: α_{τ} with n-jets

 α_{T} gives promising results. Even for n > 2 a reasonable edge at α_{T} =0.5 is maintained, but as n increases the signal (and real MET) slopes get steeper.

 α_{T} appears to provides a **robust observable** for rejecting QCD events while maintaining a good signal yield.

Important to note that ΔH_{T} method places no contraint on the event shape – purely clusters jets on E_T

CMS AN-08/114

α_{T} with n-jets: results

Important note:

No optimizations for the N-jet topologies. Apply (blindly) the di-jet cuts for all topologies.

Certainly (much) room for improvement.

These results are meant for illustrative purpose only but an S/B~7 is very promising.

n	Cut	QCD	$t\bar{t}, W, Z$	$Z \rightarrow \nu \bar{\nu}$	LM1				
2	H_T	3.3×10^{6}	245	2414	1770 -				
1 fb ⁻¹	α_T	0	58.8	20.4	440.0				
	$\Delta \phi$	0	57.7	19.2	432.7				
3	H_T	6.8×10^{6}	213	5669	3071				
	α_T	24.0	64.4	49.9	852.5				
	$\Delta \phi$	24.0	63.9	45.9	837.7				
4	H_T	4.0×10^{6}	86.0	7078	2510				
	α_T	2.5	24.5	41.8	676.5				
	$\Delta \phi$	2.5	24.0	41.4	668.2				
5	5 H_T		19.2	4710	1350				
	α_T	21.5	5.8	16.4	295.3				
	$\Delta \phi$	21.5	5.8	16.1	290.3				
6	H_T	1.8×10^{5}	2.6	2105	552.5				
	α_T	0.4	0.8	8.4	103.1				
	$\Delta \phi$	0.4	0.8	8.2	101.0				
Total	α_T	48.4	154.3	136.9	2367.4				
	$\Delta \phi$	48.4	152.2	130.8	2329.9				

CMS preliminary

After preselection

After additional cut in $\Delta\Phi$ - no gain as

After cut in α_{T}

expected!

S/B≈7

Further robustness studies: α_{T}

0% bin)

Compare the relative S/B performance of α_{T} analysis to the more traditional "TDR style jet+MET" analysis.

Apply additional smearing to jet energy and momenta to probe robustness

"TDR style" analysis cuts inspired by MET +jet SUSY search:

- HLT2JET trigger;
- 10 GeV lepton veto;
- 3-6 "good" jets (inclusive);
- H_T > 500 GeV, MH_T > 250 GeV
- ΔΦ[Mh_T, ji]>0.3, i=1,2,3
- R1, R2 > 0.5

Jet smearing:

Gaussian smearing (σ is the "smear factor") applied to the E and p of each jet. S/B maintained up to ~15-18% S/B (normalised by Performance degrades after ~10% smearing <u>____</u>α_τ — TDR-style CMS preliminary 10⁻¹ 15 20 5 10 Jet smear factor / % Samples used: S = LM1, B = QCD, Z

 $(\rightarrow vv)$ + jets, and tt, W, Z + jets.

Generalising the α_{T} approach

With better understanding of α_T , we can design alternative "self-correcting" observables by tuning the form of the numerator and denominator to adjust the rate of correction: \wedge HT = F_i^1 - F_i^2

 $\alpha_T = \frac{\frac{1}{2} \left(H_T - \Delta H_{T(n)} \right)}{\sqrt{H_T^2 - |\mathbf{M}_T|^2}}$

$$\Delta H = L_T = L_T$$

$$\beta_T = \frac{1}{2} \left(H_T - \Delta H_{T(n)} \right)$$

 $H_T - |\mathbf{h}_T|$

$$\gamma_T = \frac{\frac{1}{2}\sqrt{H_T^2 - \Delta H_{T(n)}^2}}{\sqrt{H_T^2 - |\mathbf{M}_T|^2}}$$

Study effect of cuts in Δ HT/HT vs. MHT/HT plane.

March 10th, 2009

Generalising the α_{τ} approach

$\alpha_T = \frac{\frac{1}{2} \left(H_T - \Delta H_{T(n)} \right)}{\sqrt{H_T^2 - \mathbf{M}_T ^2}}$	$\beta_T = \frac{\frac{1}{2} \left(H_T - \Delta H_{T(n)} \right)}{H_T - \mathbf{M}_T }$	$\gamma_T = \frac{\frac{1}{2}\sqrt{H_T^2 - \Delta H_{T(n)}^2}}{\sqrt{H_T^2 - \mathbf{M}_T ^2}}$	
---	---	--	--

2009

		$eta_T > 0.8$				$\gamma_T > 0.6$			
n	Cut	QCD	$Z\to \nu\bar\nu$	$t\bar{t}, W, Z$	LM1	QCD	$Z \to \nu \bar{\nu}$	$t\bar{t}, W, Z$	LM1
2	β_T / γ_T	2.1	101.8	52.1	754.1	1.5	80.8	30.4	600.4
	$\Delta \phi$	2.1	92.4	37.8	672.6	1.5	80.8	30.4	600.4
3	β_T / γ_T	29.0	105.4	122.3	1339.3	6.0	69.8	47.9	916.3
	$\Delta \phi$	27.5	88.4	82.4	1174.9	6.0	69.8	47.7	914.9
4	β_T / γ_T	13.7	44.2	91.4	1068.5	2.5	21.1	26.9	556.4
	$\Delta \phi$	7.7	37.0	76.6	940.5	1.0	21.1	26.9	555.0
5	β_T / γ_T	24.0	7.9	38.0	462.7	21.5	4.0	7.9	176.0
	$\Delta \phi$	22.0	7.5	28.9	408.6	21.0	4.0	7.9	176.0
6	β_T / γ_T	2.5	0.9	16.2	151.5	0.4	0.3	2.8	46.5
	$\Delta \phi$	2.5	0.9	13.6	138.1	0.4	0.3	2.8	46.5
Total	β_T / γ_T	71.3	260.2	320.0	3776.1	31.9	176.0	115.9	2295.6
	$\Delta \phi$	61.8	226.2	239.3	3334.7	29.9	176.0	115.7	2292.8
1 fb⁻¹: S/B = 5.8, S/ \sqrt{B} = 148							/B = 7.1,	S/√B = 12	28 0 0

Clear signal very early on for favourable low mass SUSY points!

Dark Matter Search in Context of SUSY

Bounds from precision measurements: electroweak, flavour and cosmological data

March 10th, 2009

Constrain parameter space of MSSM

- How can we best exploit the available experimental data to constrain New Physics models?
 - Combine as much experimental information as possible
 - Famous example:
 - Standard Model fit to electroweak precision data
- Extend it to include New Physics models
 - Here: Minimal SuperSymmetic Standard Model (MSSM)
- Necessary tools:
 - calculations for experimental observables in that model and
 - a common framework that interfaces between the different calculations and combines the obtained information
- Objectives/Outcome:
 - Fit model parameters in some MSSM scenarios
 - Explore sensitivity of different observables to parameter space

Se mi nar Str

General Idea

- What observables can be used to constrain the model?
 - Low energy (precision) data
 - Flavour physics (many constraints from B physics)
 - Other low energy observables, e.g. g-2
 - High energy (precision) data
 - Precision electroweak observables, e.g. M_{W} , m_{top} , asymmetries
 - Cosmology and Astroparticle data
 - e.g. relic density
- How to exploit this information?
 - State of the art theoretical predictions (tools)
 - Development of a framework for combination of these tools

Collaboration between experiment and theory

Buchmüller, Oliver (CERN) – Exp.
De Roeck, Albert (CERN & Uni. Antwerpen) – Exp.
Flächer, Henning (CERN) – Exp.
Isidori, Gino (INFN Frascati) – Theo.
Paradisi, Paride (Tech. Uni. München) – Theo.
Weiglein, Georg (Durham) – Theo.

Cavanaugh, Richard (Uni. of Florida) – Exp. Ellis, John (CERN) – Theo. Heinemeyer, Sven (Santander) – Theo. Olive, Keith (Uni. of Minnesota) – Theo. Ronga, Frédéric (CERN) – Exp.

See O. Buchmüller et al., PLB 657/1-3 pp.87-94

List of implemented Observables

Low energy obs	servables		Electroweak observables			
$R(b o s \gamma)$	Isidori & Para	disi micrOMEGAs	$\Delta lpha_{\sf had}^{(5)}(m_{\sf Z}^2)$	SUSY-Pope		
R(B o au u)	Isidori & Para	disi	mz	SUSY-Pope		
$BR(K \rightarrow \mu \nu)$	Isidori & Para	disi	Γz	SUSY-Pope		
$R(B \to X_s \ell \ell)$	Isidori & Para	disi	$\sigma_{\sf had}^{\sf 0}$	SUSY-Pope		
$R(K o \pi \nu \bar{ u})$	Isidori & Para	disi	R_{I}	SUSY-Pope		
$BR(B_s o \ell \ell)$	Isidori & Para	disi micrOMEGAs	$A_{ m fb}(\ell)$	SUSY-Pope		
$BR(B_d o \ell \ell)$	Isidori & Para	disi	${\cal A}_\ell(P_\tau)$	SUSY-Pope		
$R(\Delta m_s)$	Isidori & Para	disi	$R_{\rm b}$	SUSY-Pope		
$R(\Delta m_s)/R(\Delta m$	_d) Isidori & Para	disi	R _c	SUSY-Pope		
$R(\Delta m_{\mathcal{K}})$	Isidori & Para	disi	$A_{\rm fb}({\sf b})$	SUSY-Pope		
$R(\Delta_0(K^*\gamma))$	SuperIso		$A_{\rm fb}(c)$	SUSY-Pope		
$\Delta(g-2)$	FeynHiggs		A_{b}	SUSY-Pope		
Higgs sector of	servables		A_{c}	SUSY-Pope		
mlight	FounHiggs		$A_\ell(SLD)$	SUSY-Pope		
¹¹¹ h	reymitggs		$\sin^2 \theta_{\sf w}^{\ell}(Q_{\sf fb})$	SUSY-Pope		
Cosmology obs	ervables		m _W	SUSY-Pope		
Ωh^2	micrOMEGAs	DarkSUSY	mt	SUSY-Pope		
σ_p^{SI}	DarkSUSY					

Se

ar

Str

Example Application

- Constraining the parameter space of the CMSSM
 - multi-parameter χ^2 "fit"

See O. Buchmüller et al. PLB 657/1-3 pp.87-94

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{j}^{M} \frac{(f_{\mathsf{SM}_{j}}^{\mathsf{obs}} - f_{\mathsf{SM}_{j}}^{\mathsf{fit}})^{2}}{\sigma(f_{\mathsf{SM}_{j}})^{2}}$$

- C_i : experimental constraint
- P_i : predicted value for a given CMSSM parameter set
- fitting for all CMSSM (aka mSUGRA) parameters:
 - M_0 common scalar mass (at GUT scale)
 - $M_{1/2}$ common gaugino mass (at GUT scale)
 - A₀ tri-linear mass parameter (at GUT scale)
 - **tan** β ratio of Higgs vacuum expectation values
 - sign(μ) sign of Higgs mixing parameter (fixed)
- including relevant SM uncertainties $(m_{top}, m_Z, \Delta \alpha_{had}^{(5)})$
- Sampling of parameter space with Markov-Chain Monte Carlo type technique

Example: Constrain the Neutralino (WIMP) mass

Se mi nar Str as

Direct Dark Matter Searches

Direct detection of WIMP (LSP) Dark Matter

DAMA 2000 58k kg-days Nal Ann. Mod. 3sigma w/DAMA 1996 WARP 2.3L, 96.5 kg-days 40 keV threshold ZEPLIN II (Jan 2007) result CDMS (Soudan) 2004 + 2005 Ge (7 keV threshold) XENON10 2007 (Net 136 kg-d)

- WARP 140kg (proj)
- LUX 300 kg LXe Projection (Jul 2007)
- DEAP CLEAN 1000kg FV (proj)
- XENON1T (1 tonne) projected sensitivity

Sensitivity Plot: WIMP(LSP) Mass vs. σ_p^{SI}

- $\sigma_{\rm p}^{\rm SI:} \text{ spin-independent dark matter } \\ WIMP elastic scattering cross \\ section on a free proton.$
- A convenient way to illustrate direct and indirect WIMP searches

Seminar Strasbourg

00

Oth,

arch

WIMP (LSP) sensitivity

Sensitivity will further increase once auxiliary measurement are made, e.g. lepton edges, m_{Higgs}

Example how combination of direct and indirect measurements can provide information about validity of specific new physics models

Pg

"CMSSM fit clearly favors low-mass SUSY -Evidence that a signal might show up very early?!"

Conclusions

- Mounting evidence for existence of Dark Matter from Cosmology
- LHC offers unique opportunity to search for Dark Matter candidate at a collider
 - many new physics models provide viable WIMP candidates
 - e.g., SUSY, Extra Dimensions , Little Higgs
- Missing Energy signature hard to control experimentally
 - need robust measurement techniques based on kinematics and event topology
 - very promising studies with di-jet and multi-jet events using e.g. $lpha_{ ext{T}}$
 - favourable models could be seen with ~100pb⁻¹ of understood data
- Development of Data-driven backgrounds determinations is underway
 - Subtraction of all backgrounds using matrix method, Data control sample identified
- Current EW, flavour and cosmology data allow to constrain simple SUSY models
 - preferred parameter regions could be discovered very early!
- Eagerly looking forward to collision data at the end of this year
 - Exciting times are ahead!

BACKUP

Seminar Strasbourg

March 10th, 2009

- SUSY partner for every SM particle (with 1/2 unit of spin different)
 - spin O Sfermions (squark, sleptons)
 - spin ½ Gauginos (chargino, neutralino)
- SUSY mass scale expected to be \sim 1TeV in order to:
 - Solve hierarchy problem (stabilize Higgs mass to radiative correct
 - Allow unification of strong and electroweak forces
 - Provide sensible dark matter candidate (R-parity)
 - Naturalises scalar (Higgs) sector of SM
- Downside of SUSY
 - Large parts of parameter space ruled out already
 - Many parameters

Str

SUSY models

- Different models with different SUSY breaking mechanisms via interaction with hidden sectors
- Many models available, leading to very different phenomena
 - CMSSM / mSUGRA
 - SUSY breaking by gravity mediation in hidden sector
 - Model defined by 5 parameters at the GUT scale
 - Neutralino LSP
 - GMSB
 - SUSY breaking by gauge mediation in hidden sector
 - Can have long lived NLSP
 - Graviton LSP
 - Other
 - AMSB, Split SUSY (heavy sfermions), ...
- R-Parity conservation
 - Avoid proton decay
 - Sparticles produced in pairs
 - Lightest Supersymmetric Particle (LSP) undetected
 - Missing energy signature
- I will concentrate on R-Parity conserving models in this talk

mSUGRA parameters:

 $\begin{array}{l} m_{0} - \text{ common mass of squarks/sleptons} \\ m_{\frac{1}{2}} & - \text{ common mass of Gauginos} \\ A_{0} - \text{ common trilinear coupling} \\ \tan \beta - \text{ ratio of Higgs expectation values} \\ \text{sign}[\ \mu\] - \text{ value set by EWSB} \end{array}$

Se mi nar Str as

SUSY @ the LHC

- SUSY production cross sections fairly independent of SUSY breaking model
 - Mostly driven by SUSY particle masses
 - For ~1 TeV SUSY, σ ~O(10) pb, ~O(0.01) Events/s (for L=10³⁴ cm⁻²s⁻¹)

D

 $\tilde{\chi}_2^0$

q

 \tilde{q}_L

q

g

"Typical" SUSY decay chain at the LHC

- Production cross section at LHC >> at Tevatron
 - eg. For $M_{gluino} = 400 \text{ GeV}$, $\sigma_{LHC}(gg) / \sigma_{Tevatron}(gg) \sim 20,000$ $\times \sigma_{LHC}(gg) \sim 20,000$

y (E_TMISS)

- SUSY signatures (model dependent)
 - Cascade decays
 - High P_T Jets
 - Isolated Lepton(s)

Look at transverse missing energy (and not overall missing energy) because hard scattering reaction usually has longitudinal boost

25

Ge

m

nar

Str

 $\tilde{\ell}_R$

Seminar Strasbourg

Data-driven $Z \rightarrow vv$ Background Estimation

 $Z \rightarrow vv$ background estimation from W

Data driven estimations for Z to invisible have been developed for 3 jet SUSY searches (CMS-AN 36/2008).

of events

Select W's by inverting muon veto (selecting an isolated muon), leaving all other cuts unchanged

> Event selection leads to bosons of hight P_{T.} => Muons correlated to MHT

=> Can be used for clean selection.

→ Further systematic uncertainties of acceptance, efficiency and MC ratio.

Data-driven Z→nn Background Estimation

Further Studies and Ideas.

- 3.6 Z \rightarrow mm candidates can be selected in the signal region.
- → Can be used to directly estimate Z to invisible
- Relaxed HT cut >300 GeV leads to 20 $Z \rightarrow mm$ Candidates
- and can be used to measure ratio W/Z 186 clean (90% purity) W candidates.
- \rightarrow Can be used to measure Z/W ratio in close phase space
- \bullet A strategy to use photon + jets to estimate Z to invisible could be adopted from CMS-AN 36/2008.

Systematic Studies

- Variation of jet energy scale and resolution
 - 10% gaussian smearing of jet p_{T} 's and of 0.1 rad of ϕ measurement
 - Scaling of jet energy by ± 5%
 - Scaling of jet energy by $\pm 3\%$ for endcap/forward ($|\gamma| \ge 1.4$)

	LM1	$Z \rightarrow \nu \bar{\nu}$	tt,W+jets,Z+jets	QCD	S/B
default	432	57	19	0	5.6
10% smeared	421	55	18	0	5.4
+ 5% scaled	455	67	23	0	5.0
- 5% scaled	378	49	15	0	5.9
forward +3% scaled	432	58	18	0	5.6
forward -3% scaled	432	55	18	0	5.8

- Smearing has only small influence (~3%)
- Scaling changes effective HT cut
- Stable S/B for all variations!

Seminar Strasbourg

Conclusions

- Inclusive di-jet analysis is an extension to the PTDR-II
- SUSY searches looking for a complementary signature
- Analysis promising, exploiting particular event topology
 - α (α T) and $\Delta\phi$ very powerful
 - Shown results do not rely on calorimetric MET
- Data-driven backgrounds determinations have been developed
 - Subtraction of all backgrounds using matrix method
 - define signal enriched and depleted |eta| regions
 - checks on real data in place
 - $Z \rightarrow vv$ can be obtained from $W \rightarrow \mu v$
 - See also approved analysis CMS AN 2008/036
- Extension to calo MET independent multi-jet analyses under study
- Benchmark points (e.g. LM1) could be observed in dataset of ~100pb-1
 - Assuming detector performance is understood

()

Extending the search to n-jets

$\alpha_T = \frac{\min\left(E_T^{j_1}, E_T^{j_2}\right)}{M_T^{j_1, j_2}}$

Merging the jets into pseudo-jets

 α_{T} uses M_{T} ... we should use a merging scheme that keeps M_{T} the same no matter which jet combination used to form the pseudo-jets.

$$M_T(j_1, j_2, j_3) = M_T(j_1, \{j_2, j_3\}) = M_T(\{j_1, j_2\}, j_3)$$

where

$$M_T(j_1, \dots, j_i, \dots, j_n) = \sqrt{\left[\sum_{i=1}^n E_T(j_i)\right]^2 - \left[\sum_{i=1}^n p_x(j_i)\right]^2 - \left[\sum_{i=1}^n p_x(j_i)\right]^2} - \left[\sum_{i=1}^n p_x(j_i)\right]^2 - \left[\sum_{i=1}^n p_x($$

So we use the Transverse Object Merging scheme:

$$E_{t(kl)} = E_{t(k)} + E_{t(l)}; \ p_{x(kl)} = p_{x(k)} + p_{x(l)}; \ p_{y(kl)} = p_{y(k)} + j \overline{\underline{e}}_{y(k)}$$

i.e. add the lengths (E_T) together, point in the direction of the vectorial sum.

Optimising QCD rejection

This plot is very insightful: we can see that a cut on $MH_T/H_T>0.5$ would remove most QCD events except for events where ΔH_T and MH_T are strongly correlated. If we can say this is due to severe mismeasurement, might there be another way of removing them?

2009

000

- $\Delta \Phi(Mh_T, j_i)$ cut? (M. Stoye)
- H_T binning i.e. flat MH_T cut? (D. Stuart)
- Topology: Fox-Wolfram moments (H. Flächer), transverse thrust? (M. Stoye)

March 10th, 2009 Making the same 2D plot for the n = 2 system, we can start to gain an insight into the success of α_{T} for the dijet case as presented in CMS AN-2008/071. MH_{T} and ΔH_{T} are very ţ. strongly correlated in ЧΗ Events / the dijet case. This 0.8 explains the selfprotection observed in 0.6 $\alpha_{\rm T}$ – i.e. the sharp QCD edge at $\alpha_{\rm T}$ = 0.5. n=2 0.4 events/fb⁻¹ 10⁶ QCD CMS SUSY LM1 = 0.55 10⁵ t. W. Z + jets 0.2 = 0.8 10⁴ 10³ = 0.6 -----γ 10² າວັ 10 0 0.2 0.4 0.8 0.6 0 10⁻¹0 0.5 $\Delta H_{T(n)} / H_{T}$ α

The dijet system revisited

SUSY Discovery Potential CMSSM and NUHM1

 \bigcirc

 \bigcirc 20

Discover Potential for "multi-jet, multi-lepton and missing energy search" is described in the CMSSM.

Both ATLAS and CMS have very similar performance (as expected).

How do we characterize the search?

• We establish benchmark points to study the various different Signatures

• Almost all "Proper SUSY" BM points are defined in the CMSSM (Msugra)

 It's a convenient way to establish signature changes with only 4 parameter m0, m1/2, tanβ, A0, sign(μ)

• We <u>hope</u> that the set of CMSSM signatures will be close to reality but we can't be 100% certain

00

Frankly, we don't really know how exactly a "Dark Matter Candidate" model will manifest itself in form of a multi-Jet&multi-Lepton&MET signature in our Detector -we only have a crude idea and this idea is mainly inspired by the CMSSM!

What is our Discovery Potential?

Already with as little as as 100/pb@14TeV we cover easily all low mas benchmark points!

Even with only 50/pb @10TeV we cover almos all low mass benchmark points!

Comparison: Exclusion reach of DO for 2.1/fb for -Jet&MET search Phys.Lett.B660:449-457,200

If the CMSSM is of any reference, New Physics might show up very early in the "Proper SUSY" searches at the LHC...

2003