

Why the NMSSM? Low-energy phenomenology and possible signatures at the LHC

Ana M. Teixeira (IST - Lisbonne)

Laboratoire de Physique Corpusculaire, Clermont-Ferrand 23 January 2009

Do we need to go beyond the Standard Model?

Looking for a theory that describes Nature as we perceive it...

massive **neutrinos**

⇒ Observation: matter - antimatter asymmetry

dark matter

⇒ Theoretically:

EWSB mechanism: the Higgs (yet to be discovered!) the hierarchy problem m_H^2 only SM dimensionful parameter $\Delta m_H^2 \propto g^2/16\pi^2 \Lambda_{\rm UV}^2$ not "protected"!

Understand the SM: gauge group, flavour, CPV, mass generation ... E.g. gauge couplings $g_1 : g_2 : g_3$ (GUT?)

4 fundamental interactions: inclusion of gravity?

 $\Lambda_{\text{QCD}} \leftrightarrow M_{\text{EW}} \longleftarrow --- \longrightarrow M_{\text{Planck}}$ the desert?

Extending the Standard Model

Any "candidate" model /theory should, ideally:

★ Explain experimental observation;

Solve (or at least improve) **SM** theoreticall **issues**;

Testable (allow for a dialogue with experiment!) Profit from a **unique era!** (LHC, flavour dedicated, dark matter, Planck, etc..)

Beyond the SM: several appealing, well motivated possibilities (from A to Z): Extended Gauge Groups; Extra dimensions; GUTs; Little Higgs; String theory; **Supersymmetry**; ...

From the SM to the cNMSSM: plan

SUSY on a nutshell

Minimimal SUSY extension of the SM

The NMSSM: Introduction

Illuding detection at LEP

Aspects of low energy phenomenology

NMSSM from supergravity: Allowed parameter space

Higgs and sparticle mass spectra

cNMSSM at colliders

Motivating Supersymmetry

SUSY on a nutshell

Symmetry that relates Bosons and Fermions, Forces and Matter Introduces new Particles: 2 Higgs doublets (H_u, H_d) $[\tan \beta = v_u/v_d]$ and superpartners for all particles

Broken symmetry: $m_{\tilde{e}} \neq m_e$

Motivating SUSY

- Elegant solution to the hierarchy problem If SUSY is softly broken $\Delta m_H^2 \propto M_{SUSY}^2 (\frac{\lambda}{16\pi^2} \log \frac{\Lambda_{UV}}{M_{SUSY}})$
- Radiative spontaneous electroweak symmetry breaking At M_{EW} , one "naturally" has $m_{H_u}^2 < 0$ (if $m_t \gtrsim 70 \text{ GeV}$)
- Unification of the gauge couplings (around 10¹⁶GeV)
- If R-parity conserving: neutral, colourless, stable Lightest SUSY Particle \Rightarrow candidates for cold dark matter
- SUSY versions of mechanisms for *v*-mass generation and leptogenesis
- Inclusion of gravity with local SUSY??

Minimal SUSY extension of the SM (MSSM)

$$\begin{aligned} & \text{Superfield } \hat{\phi} & \begin{pmatrix} \text{SM particles} \\ \text{super-partners} \end{pmatrix} & \Delta \text{ spin} = \frac{1}{2} & \text{same quantum } \text{\#'s} \\ & \text{same interactions} \end{aligned} \\ & \begin{pmatrix} \text{fermions} \\ \text{scalars} \end{pmatrix} & \longleftrightarrow & \begin{pmatrix} \text{quarks } \mathbf{q} \\ \text{squarks } \tilde{\mathbf{q}} \end{pmatrix}; \begin{pmatrix} \text{leptons } \mathbf{l} \\ \text{sleptons } \tilde{\mathbf{l}} \end{pmatrix}; & \begin{pmatrix} \text{higgsinos } \tilde{\mathbf{h}}_{\mathbf{u},\mathbf{d}} \\ \text{Higgs } H_{u,d} \end{pmatrix} \\ & \begin{pmatrix} \text{gluino } \tilde{\mathbf{g}} \\ \text{gluon } \mathbf{g} \end{pmatrix}; \begin{pmatrix} \text{wino } \tilde{\mathbf{W}} \\ \mathbf{W} \end{pmatrix}; \begin{pmatrix} \text{bino } \tilde{\mathbf{B}} \\ \mathbf{B} \end{pmatrix} & \longleftrightarrow & \begin{pmatrix} \text{fermions} \\ \text{gauge bosons} \end{pmatrix} \end{aligned}$$

Physical states: Squarks, sleptons, gluinos Charginos: {winos, charged higgsinos} $\rightarrow \tilde{\chi}_{1,2}^{\pm}$ Neutralinos: {bino, w⁰-ino, neutral higgsinos} $\rightarrow \tilde{\chi}_{1-4}^{0}$ Higgs: {CP-even, CP-odd, charged} $\rightarrow h^{0}$, H^{0} , A^{0} , H^{\pm}

Rich low-energy spectrum, potentially observable at the LHC!

Minimal SUSY extension of the SM (II):

★ Superpotential: $W = Y_u \hat{H}_u \hat{Q} \hat{u} + Y_d \hat{H}_d \hat{Q} \hat{d} + Y_e \hat{H}_d \hat{L} \hat{e} - \mu \hat{H}_u \hat{H}_d$

$$\Rightarrow \mathcal{L} \subset Y_u H_u Qu + Y_d H_d Qd + Y_e H_d Le - \mu \tilde{h}_u \tilde{h}_d + \dots$$

★ Soft-breaking terms:

$$\begin{aligned} -\mathcal{L}_{\text{SOFT}} &= m_{H_u}^2 H_u^* H_u + m_{H_d}^2 H_d^* H_d + (B\mu H_u H_d + \text{H.c.}) \\ &+ (M_i \psi_i \psi_i + \text{H.c.}) + m_{\tilde{F}}^2 \tilde{F} \tilde{F}^* + A_F Y_F H_i \tilde{F} \tilde{F}^* + \dots \end{aligned}$$

★ Two upsetting issues:

⇒ Origin & nature of SUSY breaking??

 $\Rightarrow \mu$ -problem - a mass term in W, not related to SUSY breaking remarkable exception to fermion mass generation ...

SUSY (& MSSM) issues: SUSY breaking

LEP constraints \Rightarrow "not so light" SUSY scale

Flavour physics and CP violation (K's, B's, EDM's, ...)

 \Rightarrow Flavour blind mechanism of SUSY breaking

Spontaneous SUSY breaking generates soft-SUSY breaking terms all proportional to a common scale (M_{SUSY})

Supergravity mediated
Gauge mediation⇒flavour blind (universal), CP conserving,
SUSY soft breaking terms! (at corresponding mass scale)

cMSSM (mSUGRA-like): (Universal) boundary conditions \iff **c** = "constrained"

 $M_i = M_{1/2}; \quad (M_0^{\tilde{\phi}})_{ij} = M_0 \quad ; \quad (A_0^{\tilde{\phi}})_{ij} = A_0$

at a common scale, gauge-coupling unification scale, $M_X \approx 10^{16}~{
m GeV}$

SUSY (& MSSM) issues: the μ problem

 \star SUSY conserving mass term for Higgses in $W = \mu \hat{H}_u \hat{H}_d$

* MSSM: minimisation of the scalar **potential** (EW symmetry breaking)

 $\Rightarrow M_Z^2 = M_Z^2(m_{H_u}^2, m_{H_d}^2, \mu^2)$

 $m_{H_{\star}}, m_{H_{\star}}, \mu : \mathcal{O}(10-100) \times M_Z \quad \rightsquigarrow \quad \mu \lesssim \mathcal{O}(M_{\text{SUSY}})$

* LEP constraints on $\tilde{\chi}^{\pm}$ (wino/higgsino) mass: $\rightsquigarrow \mu \gtrsim 100 \text{ GeV}$

Two "natural" values for μ : $\begin{cases}
0 (experimentally excluded) \\
typical scale of theory (M_{Planck}, M_{GUT})
\end{cases}$

Are there other possibilities??

The Next-to-Minimal Supersymmetric Standard Model

By adding a singlet superfield \hat{S} to the MSSM \Rightarrow NMSSM

\star Elegant solution to the μ -problem of the MSSM

$$\mu \, \hat{H}_{u} \, \hat{H}_{d} \quad \rightarrow \quad \lambda \, \hat{S} \, \hat{H}_{u} \, \hat{H}_{d}$$

 \Rightarrow Only **dimensionless couplings** in W; "Yukawa-like" $\lambda \, ilde{h}_{m u} \, ilde{h}_{m d} \, S$ term in ${\cal L}$

 $\Rightarrow \text{ dynamically generated } \mu: \quad \langle S \rangle \sim \mathcal{O}(M_{\text{SUSY}}) \quad \rightsquigarrow \quad \mu_{\text{eff}} = \lambda \langle S \rangle$

 \Rightarrow Scale-invariant superpotential: EW, SUSY scale only appearing via \mathcal{L}_{soft}

★ NMSSM

- \rightsquigarrow Simplest extension of the SM where the only scale is M_{SUSY}
- \rightsquigarrow Original SUSY/SUGRA extensions of the SM of this type [Fayet, Nilles, ...]

NMSSM new features: an introduction

$$\mathbf{W} = Y_u \hat{H}_u \hat{Q} \hat{u} + Y_d \hat{H}_d \hat{Q} \hat{d} + Y_e \hat{H}_d \hat{L} \hat{e} - \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{1}{3} \kappa \hat{S}^3$$

 $-\mathcal{L}_{\text{soft}}^{\text{Higgs}} = m_{H_i}^2 H_i^* H_i + m_S^2 S^* S + \left(-\lambda A_{\lambda} S H_u H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \text{H.c.}\right)$

Neutralino sector: $\begin{cases} 5 \text{ Majorana fermions } (\chi_{1-5}^0) \\ \tilde{\chi}_1^0 = N_{11}\tilde{B}^0 + N_{12}\tilde{W}_3^0 + N_{13}\tilde{H}_d^0 + N_{14}\tilde{H}_u^0 + N_{15}\tilde{S} \end{cases}$

Neutral Higgs sector: $\begin{cases} 2 \text{ pseudoscalar } (a_1^0, a_2^0) \text{ and } 3 \text{ scalar bosons } (h_1^0, h_2^0, h_3^0) \\ h_1^0 = S_{11}H_d^0 + S_{12}H_u^0 + S_{13}S \end{cases}$

NMSSM: Richer, more complex phenomenology \Rightarrow

LEP and the NMSSM

tittle fine tuning problem (**non-observation** of Higgs at LEP)

Theoretically.. $\begin{cases} \mathsf{MSSM} @ \text{tree-level: } m_{h_1^0} \lesssim M_Z |\cos 2\beta| \\ \mathsf{RC}^{(t-\tilde{t})}: m_{h_1^0}^{\mathsf{CMSSM}} \lesssim 125 \text{ GeV}; m_{h_1^0}^{\mathsf{MSSM}} \lesssim 135 \text{ GeV} \end{cases}$ Experimentally.. $m_{h_1^0}^{\mathsf{LEP}} \gtrsim 114 \text{ GeV}$

A narrow window for $m_{h_1^0}$...

★ In the NMSSM less severe "Higgs - little fine tuning problem"

Theoretically higher upper bound on $m_{h_1^0}$

Additional contributions to $m_{h_1^0}$, low $\tan\beta$ regime $\Rightarrow m_{h_1^0} \sim 145 \text{ GeV}$

Experimentally "invisible" h_1^0 (escaped LEP detection)

$$\Rightarrow \text{ Enlarge window for } m_{h_1^0}!$$

NMSSM Higgs: Illuding detection - LEP (un)signatures

⇒ NMSSM light Higgs $(m_{h_1^0} \lesssim 114 \text{ GeV})$ are still allowed by LEP data: (i) $Z - Z - h_1^0$ coupling is heavily suppressed \rightsquigarrow singlet dominated h_1^0 \rightsquigarrow SM-like h_2^0 relatively light (but ~ 15 GeV heavier than in MSSM!) [Ellwanger, Hugonie]

(ii)
$$m_{a_1^0} \lesssim 11 \text{ GeV}^*$$
 allowing for $m_{h_1^0} \sim 86 \text{ GeV}$
 $\rightsquigarrow \text{SM-like } h_1^0 \text{ dominant decay } h_1^0 \rightarrow a_1^0 a_1^0$
 $\implies \text{Forbidden } a_1^0 \rightarrow b \bar{b}, \text{ only } h_1^0 \rightarrow a_1^0 a_1^0 \rightarrow 4 \tau$
 $* \text{constraints from } B \text{-physics}$
 $[\text{Domingo, Ellwanger '07}]$

⇒ NMSSM: Constraints from LEP are easier to satisfy

Less fine-tuning required ! [Dermisek, Gunion, Bastero-Gil, ...]

The general NMSSM: LHC detection prospects

 \star Depending on the regime (especially λ , tan β) many possible scenarios...

- ⇒ Disentangling MSSM NMSSM Higgs Ellwanger, Gunion, Hugonie, Moretti, ...
 - large $\lambda \begin{cases} \text{more visible Higgs and/or } \chi^{\mathbf{0}} \\ \text{observable, unconventional Higgs and } \tilde{\phi} \text{ decays, eg. } h_1^0 \to a_1^0 a_1^0 \end{cases}$
 - small λ more difficult...

★ Phenomenological studies and experimental analysis/simulations required!

2008: NMSSM benchmark proposal [Djouadi et al|_{AMT}, '08]

 \Rightarrow 5 distinct, representative low-energy NMSSM scenarios

light singlet like h_1^0 ; dominant SM-like $h_1^0 \rightarrow a_1^0 a_1^0$; quasi-degenerate Higgses...

NMSSMTools Ellwanger, Hugonie

NMSSM Tool Box

Low-energy inputs Scenarios for SUSY breaking (SUGRA, GMSB) Sparticle and Higgs spectra: masses & couplings **BRs Higgs decays** Constraints from LEP, Tevatron on $m_{\tilde{\phi}}$ LEP constraints (even unusual decay channels) on Higgses *B*-physics and $(g-2)_{\mu}$

http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html

Link to MicrOMEGAs 2.2: Dark matter analysis

(relic density; direct and indirect detection) Belanger et al

NMSSM and soft SUSY breaking mechanisms

All previous features emerge in "generic", unconstrained NMSSM formulation; strongly dependent on the choice of \mathcal{L}_{soft}

$$\bigstar -\mathcal{L}_{\text{soft}} = m_{H_i}^2 H_i^* H_i + m_S^2 S^* S + \left(-\lambda A_{\lambda} S H_u H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \text{H.c.}\right)$$
$$+ \left(M_i \psi_i \psi_i + \text{H.c.}\right) + m_{\tilde{F}_{ij}}^2 \tilde{F}_i \tilde{F}_j^* + \dots$$

SUSY breaking mechanisms <----> universal boundary conditions at high scale

⇒ NMSSM from gauge mediated SUSY breaking

[recent: Delgado, Giudice, Slavich '07; Giudice, Kim, Rattazzi '07; Ellwanger, Jean-Louis, AMT '08; Liu, Wagner '08]

⇒ Minimal supergravity inspired NMSSM

[Ellwanger, Rausch de Traubenberg, Savoy '95,'97; Elliot, King, White'95; Djouadi, Ellwanger, AMT 0803.0253 & 0811.2699]

NMSSM with universal soft terms at GUT scale mSUGRA-like: $M_i = M_{1/2}$; $(m_0^{\tilde{F},\phi})_{ij} = m_0$; $(A_0^{\tilde{F},\phi})_{ij} = A_0$ $\Rightarrow m_{H_u} = m_{H_d} = m_S = m_0, A_\lambda = A_\kappa = A_0$

cNMSSM: $M_{1/2}, m_0, A_0, \lambda, \kappa \Rightarrow 5$ continuous parameters

Analogous to the cMSSM: $M_{1/2}, m_0, A_0, \mu, B\mu$

- * Practical purposes (RGE's, numerics, ...) $\kappa \leftrightarrow \tan \beta$
- * Requiring correct $M_Z \Leftrightarrow \tan \beta = \tan \beta (M_{1/2}, m_0, A_0, \lambda)$

constrained NMSSM: $M_{1/2}, m_0, A_0, \lambda$

Constraining the cNMSSM: scalar potential & LEP

+ Phenomenologically acceptable minimum of Higgs potential

 $V_{\rm Higgs}\sim \kappa^2\,s^4+\tfrac{2}{3}\kappa\,A_\kappa\,s^3+m_S^2\,s^2+\dots$

* Non vanishing s: $\Rightarrow m_0 \lesssim \frac{1}{3} |A_0|$

cMSSM: low m_0 disfavoured (charged slepton LSP) cNMSSM: low m_0 required to generate $\langle S \rangle$; singlino LSP

* Absence of pseudoscalar tachyons: $\Rightarrow A_{\kappa} \sim A_0 < 0$

**$$\bigstar$$
 LEP constraints** \rightsquigarrow **upper bound** on λ : typically $\Rightarrow \lambda \leq 0.02$

 \star $(g-2)_{\mu}$: favours low $M_{1/2}$ regime $M_{1/2} \lesssim 1$ TeV

Constraining the cNMSSM: dark matter

★ Comply with WMAP constraints on the relic density

 $0.094 \lesssim \Omega_{\chi_1^0} h^2 \lesssim 0.136 \qquad (\text{ at } 2\,\sigma)$

* "Assisted" $\tilde{\tau}_1$ annihilation: nearly degenerate LSP and NLSP

 $m_{\chi_S}^2 \sim m_{\tilde{ au}_R}^2 \quad \Rightarrow m_0 \lesssim \frac{1}{10} M_{1/2} \quad \text{small/vanishing } m_0$

small A_0 , determined by $M_{1/2} \implies A_0 \sim -\frac{1}{4} M_{1/2}$

★ Diluting LSP density: LSP-NLSP **thermal equilibrium** for very **small** $\lambda \rightsquigarrow$ **decoupled** LSP $\Rightarrow \lambda \gtrsim 10^{-5}$

 $\star \sigma_{
m annih}$ decreases with $m_{
m NLSP} \propto M_{1/2} \Rightarrow M_{1/2}$ not too large ($\lesssim 2-3$ TeV)

The allowed cNMSSM parameter space

★ Allowed parameter space: "line" in $[M_{1/2}, A_0]$ plane !

Small $m_0 \Rightarrow$ cNMSSM: cNMSSM ($M_{1/2}$)

The allowed cNMSSM parameter space

★ Allowed parameter space: "lines" in $[M_{1/2}, A_0]$ plane ! Small $m_0 \Rightarrow$ cNMSSM: cNMSSM $(M_{1/2})$

Higgs spectrum

"Cross-over": small mass splitting; similar components; similar couplings

► Decays: $\begin{cases} \text{SM-like } h_{1,2}^0: b\bar{b} \ (70\%); & \text{BR}(h_{1,2}^0 \to \gamma\gamma) \approx \text{BR}^{\text{SM}} \approx 2 \times 10^{-3} \\ \text{Singlet like: } b\bar{b} \text{ and } \tau^+\tau^- \ (\text{as well as } h_3^0, a_2^0, h^\pm) \\ \text{Higgs-to-Higgs: possible but NOT typical} \end{cases}$

Explaining LEP?

Back to LEP2: combined results from all Higgs searches $(e^+ e^- \rightarrow h Z; h \rightarrow b\bar{b})$

cNMSSM (low $M_{1/2}$): constrained model accounting for LEP!

Sparticle spectrum

► Neutralino sector:

Singlino LSP - nearly degenerate with $\tilde{\tau}_1$ Bino-like χ_2^0 ; Wino-like χ_3^0 ; Higgsino-like $\chi_{4,5}^0$: $M_{\chi_{4,5}^0} \approx \mu_{eff}$

Squarks & gluinos:

Gluino heavier than all squarks and sleptons $(m_0 \text{ is small})$

cNMSSM at the LHC: sparticle decay chains

$$\star \quad \tilde{\boldsymbol{g}} \to \tilde{\boldsymbol{q}} q \qquad (m_{\tilde{g}} \gtrsim m_{\tilde{q}})$$

$$\star \quad \tilde{q} \to \chi^{\mathbf{0}(\pm)} q (q') \begin{cases} \tilde{q}_{L} \to \chi^{\mathbf{0}}_{\mathbf{3}} q (33\%) \\ \tilde{q}_{L} \to \chi^{\pm}_{\mathbf{1}} q' (66\%) \end{cases} \qquad \tilde{q}_{R} \to \chi^{\mathbf{0}}_{\mathbf{2}} q$$

- $\star \quad \tilde{l}_L \to \chi_2^0 l; \qquad \tilde{l}_R \to l \, \tilde{\tau}_1 \, \tau \, (\gtrsim 99\%)$
- $\star \quad \boldsymbol{\chi_3^0}(\boldsymbol{\chi_1^\pm}) \to \tilde{\boldsymbol{l}} \, l^{(\prime)} \, (\sim 50\%) \, ; \qquad \boldsymbol{\chi_3^0}(\boldsymbol{\chi_1^\pm}) \to \tilde{\boldsymbol{\tau_1}} \, \tau \,, \, \tilde{\boldsymbol{\nu_\tau}} \, \nu_\tau \, (\sim 50\%) \,$
- $\star \quad \chi_2^{\mathbf{0}} \to \tilde{\tau}_1 \ \tau$

cNMSSM: Almost all sparticle decay chains contain $ilde{ au}_1$ NLSP !

 \star $ilde{ au}_1 o \chi_1^{m 0}\, au$; stable $\chi_1^{m 0}$

cNMSSM: subdominant cascade decays with lepton final states ...

cNMSSM "smoking gun": possibly displaced vertices cNMSSM: singlino LSP (χ_1^0), mostly right-handed NLSP ($\tilde{\tau}_1$) \Rightarrow Long-lived $\tilde{\tau}_1$!

$$\Gamma(\tilde{\tau}_{1} \to \chi_{1}^{0} \tau) \approx \lambda^{2} \frac{\sqrt{\Delta m^{2} - m_{\tau}^{2}}}{4\pi m_{\tilde{\tau}_{1}}} \left(\alpha \Delta m - \rho \, m_{\tau}\right) \qquad \qquad \Delta m \equiv m_{\tilde{\tau}_{1}} - m_{\chi_{1}^{0}}; \\ \alpha(M_{1/2}), \rho(M_{1/2}) \in [10^{-2}, 10^{-4}]$$

400 600 800 1000 1200 1400 1000 1000 Realistic $l_{\tilde{\tau}_1}$ in the lab frame $\beta_{\tau} = 0.95$ 100 100 $\Rightarrow \beta_{\tilde{\tau}_1} = v_{\tilde{\tau}_1}/c$ ($\tilde{\tau}_1$ production) $\lambda = 10^{-4}$ 10 10 I_{τ} (mm) $l_{\tilde{\tau}_1} = \frac{\hbar c}{\Gamma(\tilde{\tau}_1 \to \chi_1^0 \tau)} \sqrt{\frac{\beta_{\tilde{\tau}_1}^2}{1 - \beta_{\tilde{\tau}_1}^2}}$ 1 $\beta_{\tau} = 0.7$ 0.1 0.1 0.01 0.01 GMSB ATLAS studies: $\beta_{\tilde{\tau}_1} \gtrsim 0.7$ $\lambda = 10^{-3}$ 0.001 0.001 400 600 800 1000 1200 1400 $M_{1/2}$ (GeV)

cNMSSM: $\tilde{\tau}_1$ length of flight $\rightsquigarrow \mathcal{O}(\text{few centimeters})$

cNMSSM prospects for the LHC

Sparticle production:

dominant production $\rightsquigarrow \tilde{q}\tilde{g}, \tilde{q}\tilde{q}$ and $\tilde{q}\tilde{q}^*$ Low $M_{1/2}$ regime: $\sigma \sim 0.5$ pb $\mathcal{L} = 100 \text{ pb}^{-1} \Rightarrow 10^4 - 10^5$ events

Simplest decay cascade: $\tilde{q}_R \rightarrow \chi_2^0 q$; $\chi_2^0 \rightarrow \tilde{\tau}_1 \tau$; $\tilde{\tau}_1 \rightarrow \chi_1^0 \tau$ 3 jets $/\tilde{q}_R$ (one hard quark + 2 τ jets) & long lived $\tilde{\tau}_1$ \Rightarrow complicated measurements of sparticle spectra

Higgs production: $h_{1,2}^{\text{SM-like}} \rightsquigarrow \text{gluon-gluon & vector boson fusion} \quad h_{1,2} \rightarrow \gamma \gamma$ Higgs production:heavier Higgses \rightsquigarrow associated $b\overline{b}(tb)$ low $M_{1/2}$ singlet-like \rightsquigarrow inaccessible

Higgs cross-over region: two nearly degenerate, same couplings states sum behaves as ONE SM Higgs - resolve $\gamma\gamma$ peak? cNMSSM searches at the ILC?

 $\begin{array}{l} \textbf{cNMSSM production @ ILC} \end{array} \left\{ \begin{array}{l} \textbf{500 GeV: } \chi_{1,2}^0, \tilde{l}_R, \tilde{\tau}_R \quad (M_{1/2} \lesssim 500 \text{ GeV}) \\ \textbf{1 TeV: } \chi_{1-3}^0, \chi_1^{\pm}, \tilde{l}_R, \tilde{\tau}_R, \tilde{l}_L \\ \textbf{multi-TeV: all cNMSSM states} \end{array} \right. \end{array}$

Detection of $\tilde{\tau}_1$ (nearly **degenerate with LSP**)

Accurate determination of SUSY masses (via threshold scans)

▶ If c.m. energy ≤ 1 TeV, only **lighter** h_i and a_i accessible

- large $h_1^0 - h_2^0$ singlet/doublet mixing (nearly degenerate states) Higgs-strahlung process, $\sim 100~{
m MeV}$ Higgs mass resolution

- Higgs-to-Higgs decays: $h_2^0 \rightarrow h_1^0 h_1^0$ in $e^+e^- \rightarrow h_2^0 Z \rightarrow \mu^+\mu^- b \, \bar{b} \, b \, \bar{b}$

- Accessible singlet-like a_1^0 in $e^+e^- \rightarrow h_2^0 a_1^0 \rightarrow b \, \overline{b} \, b \, \overline{b}$

Concluding remarks & outlook

- Why the NMSSM?? simple and very attractive SUSY extension of the SM A lot of work to be done (especially experimental simulations)!
- ► cNMSSM allowed parameter space: described by ONE parameter! Very low m_0 , small A_0 values, and $M_{1/2} \lesssim 1$ TeV; $\tan \beta \sim 30$ Satisfy observed Higgs excesses at LEP and $(g-2)_{\mu}$ deviation from SM
- cNMSSM different spectra from cMSSM!

 $m_{\tilde{g}} \gtrsim m_{\tilde{q}}$; $\tilde{\tau}_1$ in all decay cascades (possibly long lived)

- **Dark matter** detection prospects: well below experimental capabilities ...
- **Testable** at LHC, but **ILC required** for precision measurements

Additional slides

NMSSM: $\tilde{\chi}^0$ and scalar Higgs mass matrices

CP-even Higgs

$$\mathcal{M}_{S,11}^{2} = M_{Z}^{2} \cos^{2} \beta + \lambda s \tan \beta (A_{\lambda} + \kappa s)$$

$$\mathcal{M}_{S,22}^{2} = M_{Z}^{2} \sin^{2} \beta + \lambda s \cot \beta (A_{\lambda} + \kappa s)$$

$$\mathcal{M}_{S,33}^{2} = 4\kappa^{2}s^{2} + \kappa A_{\kappa}s + \frac{\lambda}{s}A_{\lambda}v_{1}v_{2}$$

$$\mathcal{M}_{S,12}^{2} = \left(\lambda^{2}v^{2} - \frac{M_{Z}^{2}}{2}\right)\sin 2\beta - \lambda s (A_{\lambda} + \kappa s)$$

$$\mathcal{M}_{S,13}^{2} = 2\lambda^{2}v_{1}s - \lambda v_{2} (A_{\lambda} + 2\kappa s)$$

$$\mathcal{M}_{S,23}^{2} = 2\lambda^{2}v_{2}s - \lambda v_{1} (A_{\lambda} + 2\kappa s)$$

$$\begin{split} \mathcal{M}_{P,11}^2 &= \frac{2\lambda s}{\sin 2\beta} \left(\kappa s + A_\lambda \right) \\ \mathcal{M}_{P,22}^2 &= \lambda \left(2\kappa + \frac{A_\lambda}{2s} \right) v^2 \sin 2\beta - 3\kappa A_\kappa s \\ \mathcal{M}_{P,12}^2 &= \lambda v \left(A_\lambda - 2\kappa s \right) \end{split}$$

$$a_i^0 = \mathbf{P}_{ij} P_j^0$$

CP-odd Higgs

$$h_a^0 = S_{ab} H_b^0$$

Neutralino Sector

$$\mathcal{M}_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -M_Z \sin \theta_W \cos \beta & M_Z \sin \theta_W \sin \beta & 0 \\ 0 & M_2 & M_Z \cos \theta_W \cos \beta & -M_Z \cos \theta_W \sin \beta & 0 \\ -M_Z \sin \theta_W \cos \beta & M_Z \cos \theta_W \cos \beta & 0 & -\lambda s & -\lambda v_2 \\ M_Z \sin \theta_W \sin \beta & -M_Z \cos \theta_W \sin \beta & -\lambda s & 0 & -\lambda v_1 \\ 0 & 0 & -\lambda v_2 & -\lambda v_1 & 2\kappa s \end{pmatrix}$$

Ranges

Additional phenomenology

Tables: Spectra

	P1	P2
$M_{1/2}~({ m GeV})$	500	1000
$m_0~({ m GeV})$	0	0
A_0 (GeV)	-122	-263
aneta	26.7	32.2
$\mu_{ m eff}$ (GeV)	640	1185
M_2 (GeV)	390	790
$m_{h_1^0}^{}$ (GeV)	86	119
$m_{h_2^0}^{}$ (GeV)	116	187
$m_{h_3^0}$ (GeV)	610	1073
$m_{a_1^0}$ (GeV)	149	323

	P1	P2
$M_{1/2}~({ m GeV})$	500	1000
$m_{\chi^0_1}$ (GeV)	122	264
$m_{\chi^0_2}$ (GeV)	206	427
$m_{\chi^0_3}^{}$ (GeV)	388	802
$m_{\chi^0_{4,5}}^{}$ (GeV)	645	1190
$m_{\chi^{\pm}_1}$ (GeV)	388	801
$m_{\chi^\pm_2}$ (GeV)	658	1198
$m_{\widetilde{g}}$ (GeV)	1150	2187
$m_{ ilde{u}_L}$ (GeV)	1044	1973
$m_{ ilde{u}_R}$ (GeV)	1007	1895
$m_{ ilde{t}_1}$ (GeV)	795	1539
$m_{ ilde{t}_2}$ (GeV)	997	1810
$m_{ ilde{b}_1}$ (GeV)	931	1760
$m_{ ilde{b}_2}$ (GeV)	983	1817
$m_{ ilde{e}_L}$ (GeV)	334	654
$m_{ ilde{e}_R}$ (GeV)	190	370
$m_{\tilde{\nu}_l}$ (GeV)	325	650
$m_{ ilde{ au}_1}$ (GeV)	127	269
$m_{ ilde{ au}_2}$ (GeV)	343	647
$m_{ ilde{ u}_{ au}}$ (GeV)	318	631

	P1	P2 ′
$M_{1/2}$ (GeV)	500	1000
m_0 (GeV)	40	107
A_0 (GeV)	-137	-327
aneta	30.2	38.4
$\mu_{ m eff}$ (GeV)	642	1192
M_2 (GeV)	390	791
$m_{h_1^0}^{}$ (GeV)	64	116
$m_{h_2^0}^{}$ (GeV)	116	127
$m_{h_3^0}^{}$ (GeV)	588	989
$\begin{bmatrix} m_{a_1^0} & (\text{GeV}) \end{bmatrix}$	149	333
$m_{\chi^0_1}$ (GeV)	107	226
$m_{ ilde{ au}_1}$ (GeV)	112	235

Tables: Production and Decays

-		
σ (pb)	P1	P2
$\tilde{g} \; ilde{g}$	9.5×10^{-2}	2.14×10^{-4}
$ ilde{g} ilde{q}$	0.668	4.28×10^{-3}
$ ilde{q} ilde{q}$	0.436	9.21×10^{-3}
$\tilde{q} \tilde{q}^*$	0.221	1.64×10^{-3}
$\tilde{t}_1 \tilde{t}_1^*$	3.69×10^{-2}	2.63×10^{-4}
$\tilde{l}_L \tilde{l}_L^*$	3.4×10^{-3}	1.62×10^{-3}
$\tilde{l}_R \tilde{l}_R^*$	1.17×10^{-2}	8.87×10^{-4}
$ ilde{ u}_l ilde{ u}_l^*$	3.58×10^{-3}	1.53×10^{-4}
$ ilde{ au}_1 ilde{ au}_l^*$	4.8×10^{-2}	3.46×10^{-3}
$\chi^0_2\chi^0_2$	1.1×10^{-3}	6.22×10^{-5}
$\chi^0_2\chi^0_3$	1.73×10^{-4}	8.67×10^{-6}
$\chi_2^0 \chi_1^\pm$	5.37×10^{-4}	6.53×10^{-5}
$\chi^0_3\chi^0_3$	1.79×10^{-3}	5.74×10^{-5}
$\chi^0_3\chi^\pm_1$	6.51×10^{-2}	7.49×10^{-3}
$ \chi_1^+\chi_1^- $	3.53×10^{-2}	1.17×10^{-3}

BR (%)	P1	P2
$\boxed{\tilde{g} \to \tilde{q}_L \ \bar{q}}$	17.7	14.4
$\tilde{g} \to \tilde{q}_R \bar{q}$	33.6	27.5
$\tilde{g} \to \tilde{b}_1 \bar{b}$	16.5	12.8
$\tilde{g} \to \tilde{b}_2 \bar{b}$	10.9	10.3
$\tilde{g} \to \tilde{t}_1 \bar{t}$	21.2	22.4
$\tilde{g} \to \tilde{t}_2 \bar{t}$	_	12.5
$\left \tilde{q}_L \to \chi^0_3 q \right $	31.7	32.3
$\tilde{q}_L \to \chi_1^{\pm} q'$	62.7	64.3
$\tilde{q}_R \to \chi_2^0 q$	99.7	99.9
$\tilde{l}_L \to \chi_2^0 l$	100	100
$\left \tilde{l}_R \to l \tilde{\tau}_1 \tau \right $	\gtrsim 95	\gtrsim 99
$\tilde{ u}_l ightarrow \chi_2^0 \overline{ u_l}$	100	100
$\tilde{\nu}_{\tau} \to \chi_2^0 \nu_{\tau}$	13.8	6.8
$ \left\ \tilde{\nu}_{\tau} \to \tilde{\tau}_1 \right\ W $	86.2	93.2

BR (%)	P1	P2
$\chi_2^0 \to \tilde{\tau}_1 \tau$	88.3	74.3
$\chi_2^0 \to \tilde{l}_R l$	11.7	25.7
$\chi_3^0 \to \tilde{l}_L l$	22.1	28.4
$\chi_3^0 o ilde{ u}_l u_l$	27.1	29.2
$\chi_3^0 o ilde{ au}_1 au$	24.9	8.8
$\chi_3^0 o ilde{ au}_2 au$	6.9	14.8
$\chi_3^0 \to \tilde{\nu}_\tau \; \nu_\tau$	16.9	18.3
$\chi_1^{\pm} \to \tilde{\nu}_l \ l$	29.3	29.9
$\chi_1^{\pm} \to \tilde{l} \nu_l$	20.8	27.8
$\chi_1^{\pm} \to \tilde{\nu}_\tau \ \tau$	18.4	18.9
$\chi_1^{\pm} \to \tilde{\tau}_1 \nu_{\tau}$	24	8.7
$\chi_1^{\pm} \to \tilde{\tau}_2 \nu_\tau$	-	14.3