Ab initio calculations in nonperturbative quantum chromodynamics

Laurent Lellouch

CPT Marseille

Laurent Lellouch LPNHE, 12 février 2009

QCD at high μ : asymptotic freedom

Gross & Wilczek '73, Politzer '73 showed, w/ $\alpha_s = g^2/4\pi$

$$\begin{split} \mu \frac{\partial \alpha_s}{\partial \mu} &= 2\beta(\alpha_s) = -\frac{\beta_0}{2\pi} \alpha_s^2 + O(\alpha_s^3), \qquad \beta_0 = \frac{11}{3} N_c - \frac{2}{3} N_f \\ &\Rightarrow \alpha_s(\mu) \stackrel{\mu \to \infty}{\longrightarrow} 0 \end{split}$$

Tested to high accuracy in many experiments

e.g: $e^+e^- \rightarrow q\bar{q}$ at LEP (CERN)

QCD at low μ : infrared slavery

Integrate α_s running

$$\alpha_{\rm s}(\mu) = \frac{4\pi}{\beta_0 \ln(\mu^2/\Lambda_{\rm QCD}^2)} \left[1 + \cdots\right]$$

- \Rightarrow QCD becomes nonperturbative for $\mu \sim \Lambda_{QCD}$
- \Rightarrow QCD confines quarks and gluons into hadrons
- \Rightarrow less well verified

- Good evidence that QCD describes the strong interaction in the nonperturbative domain (e.g. CP-PACS '02 w/ four N_f =2, $M_{\pi} \gtrsim 500$ MeV, three $a \gtrsim 0.11$ fm, $L \approx 2.5$ fm)
- See also MILC '01, PACS-CS '08 $(N_f = 2 + 1)$
- However, systematic errors not under control

Have yet to show agreement (e.g. of hadron *masses* and *widths*) in the physical limit of QCD: $N_f = 2 + 1$, $M_{\pi} = 135$ MeV, $a \rightarrow 0$, $L \rightarrow \infty$

Flavor physics

Test SM paradigm of quark flavor mixing and CP violation and look for new physics

Unitary CKM matrix

$$\lambda = 0.2252(8) \qquad A = 0.812_{-24}^{+10} \qquad \rho \left[1 - \frac{1}{2} \lambda^2 \right] \simeq \bar{\rho} = 0.145_{-34}^{+24} \qquad \eta \left[1 - \frac{1}{2} \lambda^2 \right] \simeq \bar{\eta} = 0.339_{-15}^{+19} \qquad \text{(CKMfitter '09)}$$

d

b

S

Strategy

- Measure CKM element magnitudes with CP conserving processes
- Measure CKM element phases with CP violating processes
- Impose unitarity conditions and look for inconsistencies

 \rightarrow e.g. triangle obtained by scalar product of (d, b) columns

QCD in EW processes

 $|V_{ub}|$ from experiment \Rightarrow must evaluate nonperturbative strong interaction corrections

- Must be done in QCD to test quark-flavor mixing and CP violation and possibly reveal new physics
- Must match accuracy of BaBar, BELLE, CDF, D0, ALEPH, DELPHI, KLOE, NA48, KTEV, LHC-b, etc.

\Rightarrow Lattice QCD

What is Lattice QCD (LQCD)?

Lattice gauge theory \longrightarrow mathematically sound definition of NP QCD:

• UV (and IR) cutoffs and a well defined path integral in Euclidean spacetime:

$$\langle \mathbf{O} \rangle = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \, \mathbf{e}^{-S_G - \int \bar{\psi} D[M] \psi} \, \mathbf{O}[U, \psi, \bar{\psi}]$$
$$= \int \mathcal{D} U \, \mathbf{e}^{-S_G} \det(D[M]) \, \mathbf{O}[U]_{\text{Wick}}$$

e^{-S_G} det(D[M]) ≥ 0 and finite # of dof's
 → evaluate numerically using stochastic methods

NOT A MODEL: LQCD is QCD when $a \to 0$, $V \to \infty$ and stats $\to \infty$ In practice, limitations . . .

Limitations: statistical and systematic errors

In the past: $det(D[M]) \rightarrow cst$ (quenching); truncation of theory, currently being removed w/ difficult $N_f = 2$ or 2+1 dynamical quark calculations

Limited computer resources $\rightarrow a$, *L* and m_q are compromises and statistics finite

- Statistical: $1/\sqrt{N_{conf}}$; eliminate w/ $N_{conf} \rightarrow \infty$
- Discretization: $a\Lambda_{QCD}$, am_q , $a|\vec{p}|$, with $a^{-1} \sim 2 4 \,\text{GeV}$

 $1/m_b < a < 1/m_c \Rightarrow b$ quark cannot be simulated directly \rightarrow rely on effective theories (large m_Q expansions of QCD)

Eliminate w/ continuum extrapolation $a \rightarrow 0$: need at least three a's

- Chiral extrapolation: $m_q \rightarrow m_u$, m_d Use ChPT or flavor expansions to give functional form Requires difficult calculations w/ $M_{\pi} \leq 350 \text{ MeV}$
- Finite volume: for simple quantities ~ e<sup>-M_πL</sub> and M_πL ≥ 4 usually safe Resonant states more complicated Eliminate with L → ∞ (χPT gives functional form)
 </sup>
- Renormalization: like in all field theories, must renormalize: can be done in PT, best done nonperturbatively

The Berlin wall ca. 2001

L = 2.5 fm, T = 8.6 fm, a = 0.09 fm

Unquenched calculations very demanding: # of d.o.f. ~ $\mathcal{O}(10^9)$ and large overhead for computing det(D[M]) (~ $10^9 \times 10^9$ matrix) increased more rapidly than expected as $m_{u,d} \rightarrow m_{u,d}^{ph}$

 \rightarrow MILC got a head start w/ staggered fermions: $N_f = 2 + 1$ simulations with $M_{\pi} \gtrsim 250 \,\text{MeV}$

- Impressive effort: many quantities studied
- Detailed study of chiral extrapolation with staggered χ PT

2001 – 2006: staggered dominance and the wall falls

Staggered fermions reign

(Davies et al '04)

Devil's advocate! \rightarrow potential problems:

• $\det(D[M])_{N_f=1} \equiv \det(D[M]_{stagg})^{1/4}$ to eliminate spurious "tastes"

 \Rightarrow corresponds to non-local theory (Shamir, Bernard,

Golterman, Sharpe, 2004-2008)

- \Rightarrow QCD when $a \rightarrow 0$? (Universality?)
- at larger *a*, significant lattice artefacts \Rightarrow complicated chiral extrapolations w/ S χ PT
- review of staggered issues in Sharpe '06, Kronfeld '07

 \Rightarrow Important to have an approach which stands on firmer theoretical ground

Wilson fermions strike back:

- Schwarz-preconditioned Hybrid Monte Carlo (SAP) (Lüscher '03-'04)
- HMC algorithm with multiple time scale integration and mass preconditioning (Sexton et al '92, Hasenbusch '01, Urbach et al '06, BMW '08)

$N_f = 2+1$ Wilson fermions à la BMW

Dürr, Fodor, Hoelbling, Hoffman, Katz, Krieg, Kurth, Lellouch, Lippert, Szabo, Vulvert (BMW Coll.) PRD79 '09

- Hasenbusch w/ bells and whistles: RHMC w/ mass preconditioning, multiple time scales, Omelyan integrator and mixed precision techniques
- actions which balance improvements in gauge/fermionic sector and CPU:
 - tree-level $O(a^2)$ -improved gauge action (Lüscher et al '85)
 - tree-level O(a)-improved Wilson (Sheikholeslami et al '85) with 6-level stout smearing (Morningstar et al '04)
 - \Rightarrow formally have $O(\alpha_s a)$ discretization errors

Nonperturbative improvement coefficient *c*_{SW} close to tree-level value thanks to smearing (Hoffmann et al '07, quenched study w/ nHYP)

 \Rightarrow our fermions may be close to being nonperturbatively O(a)-improved

Does our smearing enhance discretization errors?

Dürr, Fodor, Hoelbling, Hoffman, Katz, Krieg, Kurth, Lellouch, Lippert, Szabo, Vulvert (BMW Coll.) PRD79 '09

 \Rightarrow scaling study: $N_f = 3$ w/ action described above, 5 lattice spacings, $M_{\pi}L > 4$ fixed and

$$M_{\pi}/M_{
ho} = \sqrt{2(M_{K}^{
hoh})^2 - (M_{\pi}^{
hoh})^2/M_{\phi}^{
hoh}} \sim 0.67$$

i.e. $m_q \sim m_s^{ph}$

 M_N and M_{Δ} are linear in a^2 as a^2 is scaled by a factor 6 up to $a \sim 0.16 \,\mathrm{fm}$

 \Rightarrow looks nonperturbatively O(a)-improved

 \Rightarrow very good scaling

Ab initio calculation of the light hadron spectrum

Dürr, Fodor, Frison, Hoelbling, Hoffman, Katz, Krieg, Kurth, Lellouch, Lippert, Szabo, Vulvert (BMW Coll.) Science 322 '08

Aim: determine the light hadron spectrum in QCD in a calculation in which all sources of systematic errors are controlled

- ⇒ **a.** inclusion of sea quark effects w/ an exact $N_f = 2 + 1$ algorithm and w/ an action whose universality class is known to be QCD
 - \rightarrow see above
- ⇒ **b.** complete spectrum for the light mesons and octet and decuplet baryons, **3** of which are used to fix m_{ud} , m_s and a
- \Rightarrow c. large volumes to guarantee negligible finite-size effects (\rightarrow check)
- ⇒ **d.** controlled interpolations to m_s^{ph} (straightforward) and extrapolations to m_{ud}^{ph} (difficult, requires $M_{\pi} \leq 200 \text{ MeV}$)

Of course, simulating directly around m_{ud}^{ph} would be better!

 \Rightarrow **e.** controlled extrapolations to the continuum limit: at least 3 a's in the scaling regime

Simulation parameters

β, a [fm]	am _{ud}	M_{π} [GeV]	am _s	$L^3 \times T$	# traj.
3.3	-0.0960	0.65	-0.057	$16^3 \times 32$	10000
	-0.1100	0.51	-0.057	$16^3 imes 32$	1450
~ 0.125	-0.1200	0.39	-0.057	$16^3 imes 64$	4500
	-0.1233	0.33	-0.057	$16^3 imes 64$ $24^3 imes 64$ $32^3 imes 64$	5000 2000 1300
	-0.1265	0.27	-0.057	$24^3 \times 64$	700
3.57	-0.03175	0.51	0.0	$24^3 imes 64$	1650
	-0.03175	0.51	-0.01	$24^3 \times 64$	1650
~ 0.085	-0.03803	0.42	0.0	$24^3 \times 64$	1350
	-0.03803	0.41	-0.01	$24^3 \times 64$	1550
	-0.044	0.31	0.0	$32^3 \times 64$	1000
	-0.044	0.31	-0.07	$32^3 \times 64$	1000
	-0.0483	0.20	0.0	$48^3 imes 64$	500
	-0.0483	0.19	-0.07	$48^3 \times 64$	1000
3.7	-0.007	0.65	0.0	$32^3 \times 96$	1100
	-0.013	0.56	0.0	$32^3 \times 96$	1450
~ 0.065	-0.02	0.43	0.0	$32^3 \times 96$	2050
	-0.022	0.39	0.0	$32^3 \times 96$	1350
	-0.025	0.31	0.0	$40^3 \times 96$	1450

- # of trajectories given is after thermalization
- autocorrelation times (plaquette, n_{CG}) less than ≈ 10 trajectories
- 2 runs with 10000 and 4500 trajectories \longrightarrow no long-range correlations found

ad b: light hadron masses and QCD parameters

- QCD predicts ratios of dimensionful quantities
 - \Rightarrow overall scale can be fixed w/ e.g. one hadron mass, which should:
 - be calculable precisely
 - preferebly have a weak dependence on mud
 - not decay under the strong interaction
 - \Rightarrow 2 good candidates:
 - Ω : largest strange content, but in decuplet
 - Ξ : in octet, but S=-2
 - \rightarrow 2 separate analyses and compare
- (m_{ud}, m_s) are fixed using M_{π} and M_K
- Determine masses of remaining non-singlet light hadrons in

ad b: fits to 2-point functions in different channels

e.g. in pseudoscalar channel, M_{π} from correlated fit

$$C_{PP}(t) \equiv \frac{1}{(L/a)^3} \sum_{\vec{x}} \langle [\bar{d}\gamma_5 u](x) [\bar{u}\gamma_5 d](0) \rangle \stackrel{0 \ll t \ll T}{\longrightarrow} \frac{\langle 0 | \bar{d}\gamma_5 u | \pi^+(\vec{0}) \rangle \langle \pi^+(\vec{0}) | \bar{u}\gamma_5 d | 0 \rangle}{2M_{\pi}} e^{-M_{\pi}t}$$

Effective mass $aM(t + a/2) = \log[C(t)/C(t + a)]$

Gaussian sources and sinks with $r \sim 0.32 \text{ fm}$ (BMW '08, $\beta = 3.59, M_{\pi}/M_{\rho} = 0.64, 16^3 \times 32$)

Effective masses for simulation at $a \approx 0.085 \, \text{fm}$ and $M_{\pi} \approx 0.19 \, \text{GeV}$

ad c: (I) Virtual pion loops around the world

- In large volumes $FVE \sim e^{-M_{\pi}L}$
- $M_{\pi}L \ge 4$ expected to give $L \to \infty$ masses within our statistical errors
- For $a \approx 0.125 \,\mathrm{fm}$ and $M_{\pi} \approx 0.33 \,\mathrm{GeV}$, perform FV study $M_{\pi}L = 3.5 \rightarrow 7$

Well described by (and Colangelo et al, 2005)

$$\frac{M_X(L) - M_X}{M_X} = C \left(\frac{M_\pi}{\pi F_\pi}\right)^2 \frac{1}{(M_\pi L)^{3/2}} e^{-M_\pi L}$$

Though very small, we fit them out

ad c: (II) Finite volume effects for resonances

Important since 5/12 of hadrons studied are resonances

Systematic treatment of resonant states in finite volume (Lüscher, '85-'91)

E.g., the $ho \leftrightarrow \pi\pi$ system in the COM frame

• Energy measured: $W = 2(M_{\pi}^2 + k^2)^{1/2}$ with $k = |\vec{k}|$ and $\vec{k} = \vec{n}2\pi/L$, $\vec{n} \in Z^3$, in non-interacting case

• In interacting case, same W, but with k solution of

 $n\pi - \delta_{11}(k) = \phi(q), \quad n \in \mathbb{Z}, \quad q = kL/2\pi$

- $\delta_{11}(k)$ the I=J=1 scattering phase shift (neglecting higher J contributions)
- $\phi(q)$ a known kinematical function
- $\delta_{11}(k)$: use effective range and parametrize Γ_{ρ} by effective coupling

 $(B(
ho
ightarrow \pi \pi) \sim 100\%)$

Know L and lattice gives W and mass of decay products

 \Rightarrow infinite volume mass of resonance and coupling to decay products (assume mass-independent)

- Iow sensitivity to width (compatible w/ expt w/in large errors)
- small but dominant FV correction for resonances

ad d: extrapolation to m_{ud}^{ph} and interpolation to m_s^{ph}

Assume here that scale is set by M_{Ξ} ; analogous expressions hold when scale is set by M_{Ω}

Consider two different approaches to the physical limit for a hadron mass M_X

(1) Determine a^{-1} self-consistently in GeV through $a = a_{\Xi} \equiv \frac{aM_{\Xi}(M_{\pi}^{ph}, M_{K}^{ph})}{M_{\Xi}^{ph}}$ $\frac{aM_{X}(aM_{\pi,K}/a_{\Xi}, a_{\Xi})}{a_{\Xi}} \xrightarrow{aM_{\pi,K}} \xrightarrow{M_{\pi,K}^{ph}, a_{\Xi} \to 0} \text{ prediction for } M_{X}^{ph}$

(2) Normalize aM_X by aM_{Ξ} at fixed lattice parameters \rightarrow possible cancellations in ratio

$$R_{X} \equiv \left(\frac{aM_{X}}{aM_{\Xi}}\right) \left(aM_{\pi,K}/aM_{\Xi}, aM_{\Xi}\right) \xrightarrow{\frac{aM_{\pi,K}}{aM_{\Xi}} \to \left(\frac{M_{\pi,K}}{aM_{\Xi}}\right)^{ph}, aM_{\Xi} \to 0} \text{ prediction for } \left(\frac{M_{X}}{M_{\Xi}}\right)^{ph}$$

Use both to help estimate systematic error

ad d: extrapolation to m_{ud} and interpolation to m_s

For both normalization procedures, use parametrization (for (2), $M_X \rightarrow R_X$)

$$M_X = M_X^{(0)} + \alpha_K M_K^2 + \alpha_\pi M_\pi^2 + \text{h.o.t.}$$

- linear term in M_K^2 is sufficient for interpolation to physical m_s
- curvature in M_{π}^2 is visible in extrapolation to m_{ud} in some channels
- \rightarrow two options for h.o.t.:
 - ChPT: expansion about $M_{\pi}^2 = 0$ and h.o.t. $\propto M_{\pi}^3$ (Langacker et al '74)
 - Flavor/Taylor: expansion about center of M_{π}^2 interval considered and h.o.t. $\propto M_{\pi}^4$
 - \Rightarrow try both and difference \rightarrow systematic error

Further estimate of contributions of neglected h.o.t.

 \rightarrow restrict fit interval: $M_{\pi} \leq 650 \rightarrow 550 \rightarrow 450 \,\mathrm{MeV}$

 \rightarrow use all 3 ranges for error estimate

ad d: including continuum extrapolation

- Cutoff effects formally $O(\alpha_s a)$ and $O(a^2)$
- Small and cannot distinguish a and a^2
- Include through

$$M_X^{ph} \rightarrow M_X^{ph} [1 + \gamma_X a]$$
 or $M_X^{ph} [1 + \gamma_X a^2]$

 \rightarrow difference used for systematic error estimation

not sensitive to <u>ams</u> or <u>amud</u>

Systematic and statistical error estimate

Uncertainties associated with:

- Continuum extrapolation $\rightarrow O(a)$ vs $O(a^2)$
- Extrapolation to physical mass point
 - \rightarrow ChPT vs flavor expansion
 - $\rightarrow~3~\ensuremath{\textit{M}_{\pi}}\xspace$ ranges $\leq 650\,\ensuremath{\textit{MeV}}\xspace,\,550\,\ensuremath{\textit{MeV}}\xspace,\,450\,\ensuremath{\textit{MeV}}\xspace$
- Normalization → M_X vs R_X
 ⇒ contributions to physical mass point extrapolation (and continuum extrapolation) uncertainties
- Excited state contamination \rightarrow 18 time fit ranges for 2pt fns
- Volume extrapolation \rightarrow include or not leading exponential correction

 \Rightarrow 432 procedures which are applied to 2000 boostrap samples, for each of Ξ and Ω scale setting

Systematic and statistical error estimate

 \rightarrow distribution for M_X : weigh each of the 432 results for M_X in original bootstrap sample by fit quality

- Median \rightarrow central value
- Central 68% CI \rightarrow systematic error
- Central 68% CI of bootstrap distribution of medians \rightarrow statistical error

Post-dictions for the light hadron spectrum

Post-dictions for the light hadron spectrum

Results in GeV with statistical/systematic errors

	Exp.	Ξ scale	Ω scale
ρ	0.775	0.775(29)(13)	0.778(30)(33)
K *	0.894	0.906(14)(4)	0.907(15)(8)
Ν	0.939	0.936(25)(22)	0.953(29)(19)
٨	1.116	1.114(15)(5)	1.103(23)(10)
Σ	1.191	1.169(18)(15)	1.157(25)(15)
Ξ	1.318		1.317(16)(13)
Δ	1.232	1.248(97)(61)	1.234(82)(81)
Σ^*	1.385	1.427(46)(35)	1.404(38)(27)
Ξ*	1.533	1.565(26)(15)	1.561(15)(15)
Ω	1.672	1.676(20)(15)	

- results from \equiv and Ω sets perfectly consistent
- errors smaller in <u>=</u> set
- agreement with experiment is excellent (expt corrected for leading isospin breaking and, for π and K, leading E+M (Daschen '69) effects)

- Error budget as fraction of total systematic error
- Obtained by isolating individual contributions to total error estimate
- Do not add up to exactly 1 when combined in quadrature
 - \rightarrow non-Gaussian nature of distributions
 - \rightarrow FV taken as correction, not contribution to the error

	$a \rightarrow 0$	χ /norm.	exc. state	FV
$\overline{\rho}$	0.20	0.55	0.45	0.20
K^*	0.40	0.30	0.65	0.20
Ν	0.15	0.90	0.25	0.05
Λ	0.55	0.60	0.40	0.10
Σ	0.15	0.85	0.25	0.05
Ξ	0.60	0.40	0.60	0.10
Δ	0.35	0.65	0.95	0.05
Σ^*	0.20	0.65	0.75	0.10
Ξ*	0.35	0.75	0.75	0.30
Ω	0.45	0.55	0.60	0.05

$|V_{us}|$ from experiment and the lattice

 $|V_{us}|$ is determined from $K \to \pi \ell \nu$ and $K \to \mu \bar{\nu}(\gamma)$

Precision tests of CKM unitarity/quark-lepton universality and constraints on NP from

$$\frac{G_q^2}{G_{\mu}^2} \left[|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \right] = \left[1 + O\left(\frac{M_W^2}{\Lambda_{NP}^2}\right) \right]$$

Large amounts of new data: BNL-E865, KLOE, KTEV, ISTRA+, NA48

Currently

- $|V_{ud}| = 0.97425(22) [0.02\%]$ from nuclear β decays (Hardy & Towner '08)
- $|V_{us}| = 0.2246(12) [0.5\%]$ from K_{I3} (Flavianet '07)
- $|V_{us}/V_{ud}| = 0.2321(15) [0.6\%]$ from K_{l2} (Flavianet '07)
- $|V_{ub}| = 3.87(47) \cdot 10^{-3} \text{ [12\%]}$ (CKMfitter '09)

$|V_{us}|$ from experiment and the lattice

Combined fit (update on Flavianet '07)

- $|V_{ud}| = 0.97425(22) [0.02\%]$ $\Rightarrow \delta |V_{ud}|^2 = 4.3 \cdot 10^{-4}$
- $|V_{us}| = 0.2252(9) [0.4\%]$ $\Rightarrow \delta |V_{us}|^2 = 4.2 \cdot 10^{-4}$

• and
$$|V_{ub}|^2 \simeq 1.5 \cdot 10^{-5}$$

 $\Rightarrow \delta |V_{us}|$ and $\delta |V_{ud}|$ contribute equally to total uncertainty Find

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9999(6)$$
 [0.06%]

 \Rightarrow cannot exclude NP w/ scale $\Lambda_{NP} \gtrsim 3 \div 2 \text{ TeV} @ 1 \div 3\sigma$

$|V_{us}|$ from $K ightarrow \mu ar{ u}|$

Marciano '04: window of opportunity (PDG '08)

$$\frac{\Gamma(\mathcal{K} \to \mu \bar{\nu}(\gamma))}{\Gamma(\pi \to \mu \bar{\nu}(\gamma))} \longrightarrow \frac{|V_{us}|}{|V_{ud}|} \frac{\mathcal{F}_{\mathcal{K}}}{\mathcal{F}_{\pi}} = 0.2757(7) \ [0.25\%]$$

Need:

- F_{κ}/F_{π} to 0.5% to match $K \to \pi \ell \nu$ determination (assuming that systematics in that determination are controlled to that level)
- F_{κ}/F_{π} to 0.25% to match experimental error in $K \to \mu \bar{\nu}(\gamma)/\pi \to \mu \bar{\nu}(\gamma)$

Also

(

•
$$F_K/F_{\pi} = 1 + O\left(\frac{M_K^2 - M_{\pi}^2}{\Lambda^2}\right)$$

• On lattice, get F_{K} from e.g.

$$C_{A_0P}(t) \equiv \frac{1}{(L/a)^3} \sum_{\vec{x}} \langle [\bar{s}\gamma_5\gamma_0 u](x) [\bar{u}\gamma_5 s](0) \rangle \stackrel{0 \ll t \ll T}{\longrightarrow} \frac{\langle 0|\bar{s}\gamma_5\gamma_0 u|K^+(\vec{0})\rangle \langle K^+(\vec{0})|\bar{u}\gamma_5 d|0\rangle}{2M_K} e^{-M_K t}$$

and

$$\langle 0|ar{s}\gamma_5\gamma_0 u|K^+(ec{0})
angle=\sqrt{2}M_K F_K$$

F_{K}/F_{π} from the lattice: preliminary results

Dürr, Fodor, Hoelbling, Katz, Krieg, Kurth, Lellouch, Lippert, Szabo, Vulvert (BMW Coll.) Lattice '08

- $N_f = 2+1 \& a \simeq 0.065, 0.085, 0.125 \, \text{fm}$
- M_{π} : 190 \rightarrow 570 MeV, $LM_{\pi} \geq 4$
- Large variety of SU(2) and SU(3) fits w/ 600 MeV, 470 MeV and 420 MeV cuts on M_{π}
- a² or a terms included
- 2-loop FV corrections (Colangelo et al '05)
- many fit times, etc.
- Analyses done w/ 2000 boostrap samples
- Create distributions for central value and stat. error from different procedures weighed by fit CL
- Median of central value and stat. error distributions final value and stat. error
- Central $68\% \rightarrow$ systematic error
- \sim $\leq 2\%$ extrapolation to physical point
- $F_K/F_{\pi} = 1.19(1)(1)$

F_{κ}/F_{π} from the lattice: unquenched summary

- $\delta(F_{\kappa}/F_{\pi})^{lat} = 0.8\% \Leftrightarrow \delta(F_{\kappa}/F_{\pi}-1)^{lat} \simeq 5\%$
- ⇒ relative accuracy on calculated SU(3) breaking effect much better than for $f_{+}^{K^{0}\pi^{-}}(0)$
- ⇒ still leads to larger theory error on $|V_{us}|$ (1.3% vs 0.5%)
- F_{κ}/F_{π} straightforward to calculate
- ⇒ should soon be able to reach the $\delta (F_K/F_\pi 1)^{lat} \sim 1.5\%$ required for $\delta^{th} |V_{us}| \sim 0.25\%$, i.e. today's experimental accuracy

- Lattice QCD simulations have made tremendous progress in the last few years
- It is now possible to perform 2 + 1 flavor lattice calculations that allow to reach the physical QCD point ($M_{\pi} = 135 \text{ MeV}, a \rightarrow 0, L \rightarrow \infty$)
- The light hadron spectrum, obtained w/ a 2 + 1 flavor calculation in which extrapolations to the physical point are under control, is in excellent agreement with the measured spectrum
- A calculation of F_K/F_{π} in the same approach should allow for a very competitive determination of $|V_{us}|$ as well as stringent tests of the SM and constraints on NP
- Many more quantities are being computed: individual decay constants, quark masses, other strange, charm and bottom weak matrix elements, etc.
 - \rightarrow highly relevant for *flavor physics*
- The age of precision nonperturbative QCD calculations is finally dawning

Our "particle accelerators"

IBM Blue Gene/P (JUGENE), FZ Jülich 223 Tflop/s peak

IBM Blue Gene/L (JUBL), FZ Jülich 45.8 Tflop/s peak

IBM Blue Gene/P (Babel), IDRIS Paris 139 Tflop/s peak

And computer clusters at Uni. Wuppertal and CPT Marseille

Stability of algorithm

Dürr et al (BMW Coll.) arXiv:0802.2706

Histogram of the inverse iteration number, $1/n_{CG}$, of our linear solver for $N_f = 2 + 1$, $M_{\pi} \sim 0.21 \text{ GeV}$ and $L \sim 4 \text{ fm}$ (lightest pseudofermion)

Good acceptance

Metastabilities as observed for low M_{π} and coarse *a* in Farchioni et al '05?

Plaquette $\langle P \rangle$ cycle in $N_f = 2 + 1$ simulation w/ $M_{\pi} \in [0.25, 0.46]$ GeV, $a \sim 0.124$ fm and $L \sim 2$ fm:

- down from configuration with random links
- up from thermalized config. at $M_{\pi} \sim 0.25 \,\text{GeV}$
- $100 + \sim 300$ trajectories

 \Rightarrow no metastabilities observed

 \Rightarrow can reach M_{π} < 200 MeV, L > 4 fm and a < 0.07 fm !

Does our smearing compromise locality of Dirac op.?

Two different forms of locality: our Dirac operator is *ultralocal* in both senses

1 $\sum_{xy} \overline{\psi}(x) D(x, y) \psi(y)$ and $D(x, y) \equiv 0$ for $|x - y| > a \rightarrow$ no problem 2 D(x, y) depends on $U_{\mu}(x + z)$ for $|z| > a \rightarrow$ potential problem

However,

- $||\partial D(x,y)/\partial U_{\mu}(x+z)|| \equiv 0$ for $|z| \ge 7.1a$
- fall off $\sim e^{-2.2|z|/a}$
- 2.2 $a^{-1} \gg$ physical masses of interest
- \Rightarrow not a problem here