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QCD at high u: asymptotic freedom

Gross & Wilczek '73, Politzer '73 showed, W/ as = g°/4x

Tested to high accuracy in many experiments

e.g:ete” — qqat LEP (CERN)
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QCD at low u: infrared slavery

Integrate as running

A1
Bo In(1? / Nep)

as(11) = [1+-]

= QCD becomes nonperturbative for p ~ Agcp
= QCD confines quarks and gluons into hadrons

= less well verified

(D. Leinweber, U. of Adelaide)
2000 | | @ Good evidence that QCD describes the

1 giﬁﬁgiiﬂ:jg 0 strong interaction in the nonperturbative
1500 =d domain (e.g. CP-PACS '02 w/ four Ns=2,
| 3. |[EHA M, > 500 MeV, three a > 0.11fm,

| =N L ~ 2.5fm)

: e @ See also MILC ‘01, PACS-CS '08
Wy K (N = 2+ 1)

f—m @ However, systematic errors not under control

1000

M[MeV]

0

Have yet to show agreement (e.g. of hadron masses and widths) in the physical limit
of QCD:Nf =2+1, M, =135MeV/,a — 0, L — ¢
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Flavor physics

Test SM paradigm of quark flavor mixing and CP violation and look for new physics

Unitary CKM matrix

d S b
b .
w u 1— 3 X AN (p—in)
w N VUb L ] L - % A>\2 —|—O(>\4)
u t AN3(1— p—in) —AN? 1

A=022528) A=0812"0 [1 - —)\2} ~ 5 =0.145T% q [1 - —,\2} ~ 7 =0.339T1  (CKwmiitter '09)

Strategy

@ Measure CKM element magnitudes with CP conserving processes
@ Measure CKM element phases with CP violating processes

@ Impose unitarity conditions and look for inconsistencies

— e.g. triangle obtained by scalar product of (d, b) columns
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QCD in EW processes

At the quark level As seen in experiment

@ Must be done in QCD to test
quark-flavor mixing and CP violation
and possibly reveal new physics

@ Must match accuracy of sagar, BELLE,
CDF, DO, ALEPH, DELPHI, KLOE, NA48, KTEV, LHC-b,

etc.

= Lattice QCD
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What is Lattice QCD (LQCD)?

Lattice gauge theory — mathematically sound definition of NP QCD:

@ UV (and IR) cutoffs and a well defined path
Integral in Euclidean spacetime:

©) = [DUDiDye S P o, )

_ / DU e~ det(D[M]) O[U i

@ e °c det(D[M]) > 0 and finite # of dof’s
— evaluate numerically using stochastic )
methods L

NOT A MODEL: LQCD is QCD whena — 0, V — oo and stats — oo

In practice, limitations . . .
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Limitations: statistical and systematic errors

In the past: det(D[M]) — cst (quenching); truncation of theory, currently being
removed w/ difficult Ny = 2 or 2+1 dynamical quark calculations

Limited computer resources — a, L and mq are compromises and statistics finite

@ Statistical: 1/+/Nconf; €liminate w/ Neons — 00

@ Discretization: alocp, amg, a|p|, witha ' ~ 2 — 4 Gev

1/mp < a < 1/me = b quark cannot be simulated directly
— rely on effective theories (large mg expansions of QCD)

Eliminate w/ continuum extrapolation a — 0: need at least three a’s

@ Chiral extrapolation: mg — my, My
Use ChPT or flavor expansions to give functional form
Requires difficult calculations w/ M, < 350 MeV

@ Finite volume: for simple quantities ~ e M=t

Resonant states more complicated
Eliminate with L — oo (xPT gives functional form)

and ML > 4 usually safe

@ Renormalization: like in all field theories, must renormalize:
can be done in PT, best done nonperturbatively
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The Berlin wall ca. 2001

Unqguenched calculations very demanding: # of d.o.f. ~ ©(10°) and large overhead
for computing det(D[M]) (~ 10° x 10° matrix) increased more rapidly than expected

as my 4 — mP>,

L=25fm, T=8.6fm,a=0.09 fm

10 w T N . . .y
- Physicd point , Staggered and Wilson with traditional
8 8F . unquenched algorithms (< 2004)
g 6l i @ cost ~ Ncoan5/4mq_2'5_>3a_7 (Gottlieb
Lo
8 0 '02, Ukawa '02)
> a4 Staggered _
2 | (Redlgonthm) @ Both formulations have a cost wall
g .
| . | @ Wall appears for lighter quarks w/
% —om 05 05 staggered

—— MILC got a head start w/ staggered fermions: N = 2 + 1 simulations with
M, > 250 MeV

@ Impressive effort: many quantities studied
@ Detailed study of chiral extrapolation with staggered xPT
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2001 — 2006: staggered dominance and the wall falls

Staggered fermions reign

t
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(Davies et al '04)

Devil’'s advocate! — potential problems:
@ det(D[M])n,—1= det(D[M]sage)*/* to eliminate

spurious “tastes”

=> corresponds to non-local theory (shamir, Bernarg,
Golterman, Sharpe, 2004-2008)

= QCD when a — 0? (Universality?)

at larger a, significant lattice artefacts
= complicated chiral extrapolations w/ SyPT

review of staggered issues in Sharpe '06,
Kronfeld '07

= Important to have an approach which stands on firmer theoretical ground

Wilson fermions strike back:

@ Schwarz-preconditioned Hybrid Monte Carlo (SAP) (Lischer 03-04)

@ HMC algorithm with multiple time scale integration and mass preconditioning
(Sexton et al '92, Hasenbusch '01, Urbach et al ‘06, BMW ’'08)
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N:=2-+1 Wilson fermions a la BMW

Durr, Fodor, Hoelbling, Hoffman, Katz, Krieg, Kurth, Lellouch, Lippert, Szabo, Vulvert (BMW Coll.) PRD79 '09

@ Hasenbusch w/ bells and whistles: RHMC w/ mass preconditioning, multiple
time scales, Omelyan integrator and mixed precision techniques

@ actions which balance improvements in gauge/fermionic sector and CPU:

o tree-level O(a?)-improved gauge action (Lischer et al 's5)
o tree-level O(a)-improved Wilson (sneiknolesiami et al 's5) With 6-level stout
Smearing (Morningstar et al '04)

= formally have O(«asa) discretization errors

1.7 —

16k — N.P. thin link i

. . .. i - — — 1-loop thin link ]
Nonperturbative improvement coefficient 15} o N.P.nHYP ]

csw close to tree-level value thanks to
smearing (Hoffmann et al ‘07, quenched study w/ nHYP)

= our fermions may be close to being
nonperturbatively O(a)-improved
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M[MeV]

Does our smearing enhance discretization errors?

i.e. mg ~ m?
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Durr, Fodor, Hoelbling, Hoffman, Katz, Krieg, Kurth, Lellouch, Lippert, Szabo, Vulvert (BMW Coll.) PRD79 '09

= scaling study: Ny = 3 w/ action described above, 5 lattice spacings, ML > 4 fixed
and

~0.06 fm
- 0.15 fm
018 fm
020 fm]

01 0.015 0.02 0.025 0.03 0.035 0.04

M /M, = 1/2(ME")2 — (MEM)2/MP" ~ 0,67

My and Mx are linear in a2 as a° is
scaled by a factor 6 up to
a~0.16fm

= looks nonperturbatively
O(a)-improved

= very good scaling
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ADb initio calculation of the light hadron spectrum

Dirr, Fodor, Frison, Hoelbling, Hoffman, Katz, Krieg, Kurth, Lellouch, Lippert, Szabo, Vulvert (BMW Coll.) Science 322 '08

Aim: determine the light hadron spectrum in QCD in a calculation in which all sources
of systematic errors are controlled

= a. inclusion of sea quark effects w/ an exact Ny = 2 + 1 algorithm and w/ an
action whose universality class is known to be QCD

— see above

= b. complete spectrum for the light mesons and octet and decuplet baryons, 3 of
which are used to fix myq, ms and a

4

c. large volumes to guarantee negligible finite-size effects (— check)

4

d. controlled interpolations to m?" (straightforward) and extrapolations to mu'f’dh
(difficult, requires M < 200 MeV)

Of course, simulating directly around m”" would be better!

= e. controlled extrapolations to the continuum limit: at least 3 a’s in the scaling
regime
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Simulation parameters

3, a [fm] am,q M, [GeV] amg 13 x T # traj.
3.3 -0.0960 0.65 0.057 16° x 32 10000
-0.1100 0.51 0.057 16 x 32 1450
~ 0.125  -0.1200 0.39 0.057 16° x 64 4500
-0.1233 0.33 -0.057  16% x 64242 x 64323 x 64 5000 | 2000 | 1300
-0.1265 0.27 0.057 243 x 64 700
3.57 -0.03175  0.51 0.0 243 % 64 1650
-0.03175  0.51 -0.01 243 % 64 1650
~ 0.085  -0.03803 0.42 0.0 243 % 64 1350
-0.03803  0.41 -0.01 243 % 64 1550
-0.044 0.31 0.0 323 x 64 1000
-0.044 0.31 -0.07 323 x 64 1000
-0.0483 0.20 0.0 483 x 64 500
-0.0483 0.19 -0.07 483 x 64 1000
3.7 -0.007 0.65 0.0 323 x 96 1100
-0.013 0.56 0.0 323 x 96 1450
~ 0.065  -0.02 0.43 0.0 323 x 96 2050
-0.022 0.39 0.0 323 x 96 1350
-0.025 0.31 0.0 40% x 96 1450

@ # of trajectories given is after thermalization

@ autocorrelation times (plaquette, ncg) less than ~ 10 trajectories
@ 2 runs with 10000 and 4500 trajectories — no long-range correlations found
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ad b: light hadron masses and QCD parameters

@ QCD predicts ratios of dimensionful quantities
= overall scale can be fixed w/ e.g. one hadron mass, which should:

@ be calculable precisely
@ preferebly have a weak dependence on myqg

@ not decay under the strong interaction

= 2 good candidates:

@ (2. largest strange content, but in decuplet
@ =:inoctet, but S=-2

— 2 separate analyses and compare
@ (myg, ms) are fixed using M, and My

@ Determine masses of remaining non-singlet light hadrons in

n p
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ad b: fits to 2-point functions in different channels

e.g. in pseudoscalar channel, M from correlated fit

Con (1) = (77 > ([sel0fnsa)0) =T e

Effective mass aM(t + a/2) = log[C(t)/C(t + a)]

2.57“*‘ “7
2; < Point-Point 7
| > Gaussian-Gaussian| |
. . . % z1.5+ - —
Gaussian sources and sinks with r ~ 0.32fm A ,
(BMW '08, 8 = 3.59, M. /M, = 0.64, 16 x 32) S ]
0.5+ s
0 4 8 12
- | o t/a
0.9 & ]
0.8 & b E & 8
o . ] @%%gﬁ Q1
_06 R
mg'iz P g5 g o, 4 ] Effective masses for simulation at a ~ 0.085fm
0.3 ] and M. ~ 0.19 Ge&v/
0.2f .
0.1-  * = % x x x —————— T |
O | | | | | | | | | | | |

t/a
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ad c: (I) Virtual pion loops around the world

@ Inlarge volumes FVE ~ e~

@ ML > 4 expected to give L — oo masses within our statistical errors
@ Fora~0.125fmand M, ~ 0.33GeV, perform FV study ML =35 — 7

I LA R A B L A L L B LB B
5 ] 0.8n : :
i 4 volume dependence \ 4 volume dependence
0.225 M L=4 P g M= ° ]
I N M_L, 32 \ ML, 32 .
L —ctc,e "L fit : —ctc,e L fit
0220 ---- Colangelo et. al. 2005 ---- Colangelo et. al. 2005
S ) ,\\ | 20757
> H =
I L ©
0.215[ 1 l
T e f _________ 0.7j T ]
0.21- _ :
- T Y I YA I S NSRRI N L L ) L
12716 20 24 28 32 36 1216 20 24 28 32 36
L/a L/a
Well described by (and Colangelo et al, 2005)

2
Mx(L) = Mx _  ( Mx 1
My wFx ) (MsL)3/2

Though very small, we fit them out
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ad c: (II) Finite volume effects for resonances

Important since 5/12 of hadrons studied are resonances

Systematic treatment of resonant states in finite volume (Luscher, '85-91)
E.g., the p < 7 system in the COM frame

@ Energy measured: W = 2(M2 + k?)*2 with k = |k|
and k = i2x /L, it € Z2, in non-interacting case ’

35

@ In interacting case, same W, but with k solution of

E, /M
w

nm — 511(k) = qb(CI), nc Z, q = kL/27T

25 M/M =3
pm

@ 541 (k) the I=J=1 scattering phase shift (neglecting higher J
contributions) S
@ ¢(q) a known kinematical function M, L

@ 514 (k): use effective range and parametrize I, by effective coupling

(B(p — 7m) ~ 100%)

Know L and lattice gives W and mass of decay products

= Infinite volume mass of resonance and coupling to decay products (assume
mass-independent)

@ low sensitivity to width (compatible w/ expt w/in large errors)

@ small but dominant FV correction for resonances
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ad d: extrapolation to m", and interpolation to m}"

Assume here that scale is set by M=; analogous expressions hold when scale is set
by Mq

Consider two different approaches to the physical limit for a hadron mass My

_(MmPh pPh
(1) Determine a—* self-consistently in GeV through a = a= = =M= M)

ME"
aMy (aM  /a=,a=) K M, az—0 _ h
LA A 5 prediction for M%

a=

(2) Normalize aMyx by aM= at fixed lattice parameters — possible cancellations in ratio

aMr K M K ph
aMx () w0 O\
Rx = | Juiz ) (@Mrk/aM=, aM=) — prediction for | —*

Use both to help estimate systematic error
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ad d. extrapolation to m,yq and interpolation to mg

For both normalization procedures, use parametrization (for (2), Mx — Rx)

Mx = M + axME + axM2 + h.ot.

@ linear term in MZ is sufficient for interpolation to physical ms
@ curvature in M2 is visible in extrapolation to myg in some channels

— two options for h.o.t.:

@ ChPT: expansion about |\/|72r — 0 and h.o.t. |\/|73r (Langacker et al '74)
@ Flavor/Taylor: expansion about center of MZ interval considered and
h.ot. « M

= try both and difference — systematic error

Further estimate of contributions of neglected h.o.t.
— restrict fit interval: M, < 650 — 550 — 450 MeV

— use all 3 ranges for error estimate
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M [GeV]

ad d: including continuum extrapolation

1.5

0.5

@ Cutoff effects formally O(asa) and O(a?)

@ Small and cannot distinguish a and a?

@ Include through

MP" — MP'[14+~xa] or ME"[1+ 4« a’]

— difference used for systematic error estimation

@ not sensitive to ams or amyg

5 N

i L m K
i ........ A a:0125 fm

! --- = a=0.085fm| -
Nahyei a=0.065 fm

: | physical M_ °
L PR | | PR I T TR

0.1 0.2 0.3 0.4 0.5
M [GeV’]

M/M_

T A a=0.125 fm
-k ——-- = a=0.085fm
| physical M_ e a=0.065 fm
B ‘: ‘ | ‘ ‘ | ) ) . ! | !
0.05 0.1 0.15
(M./M_)*
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Systematic and statistical error estimate

Uncertainties associated with:

@ Continuum extrapolation — O(a) vs O(a?)

@ Extrapolation to physical mass point

— ChPT vs flavor expansion
— 3 M, ranges < 650 MeV, 550 Mev, 450 Me/

@ Normalization — My vs Ry
= contributions to physical mass point extrapolation (and continuum
extrapolation) uncertainties

@ Excited state contamination — 18 time fit ranges for 2pt fns

@ Volume extrapolation — include or not leading exponential correction

= 432 procedures which are applied to 2000 boostrap samples, for each of = and Q2
scale setting
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Systematic and statistical error estimate

— distribution for My : weigh each of the 432 results for My in original bootstrap
sample by fit quality

\ ‘ ‘
- ‘median | ] | median
0.2+ N
0.15 . 0.2 i
0.1 N
: | 0.1- |
0.05f n
| ] ) | |
900 920 940 960 980 1640 1660 1680 1700 1720
M, [MeV] M, MeV]

@ Median — central value
@ Central 68% Cl — systematic error

@ Central 68% CI of bootstrap distribution of medians — statistical error
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Post-dictions for the light hadron spectrum

2000 — l .
4| Budapest-Marseille-Wuppertal collaboration
} ——Q0
| & _—*
1500 : | ay
S - —— 2 mm
2 1000- N
z - EK* + N
= ] — P
500__ e K —— experiment
. —— width
] o Input
|——TT ¢ QCD
0
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Post-dictions for the light hadron spectrum

Results in GeV with statistical/systematic

errors _
@ results from = and (2 sets perfectly
= —— consistent
0. ol 8;82823&)3) @ errors smaller in = set
N 0.939  0.936(25)(22) . : :
A 1116 1.114(15)(5) @ agreement with experiment is
> iéié 1.169(18)(15) excellent (expt corrected for leading
A 1232  1.248(97)(61) iIsospin breaking and, for = and K,
Lo ié‘éééi?iﬁf?ﬁ leading E+M (paschen 69) effects)
Q 1.672  1.676(20)(15)
@ Error budget as fraction of total
. a—0 x/norm. exc. state FV
systematic error P 0.20 0.55 0.45 0.20
. . . . .. K* 0.40 0.30 0.65 0.20
@ Obtained by lsolatlng individual N 0.15 0.90 0.25 0.05
i i i A 0.55 0.60 0.40 0.10
contributions to total error estimate A 01 hope 0o 00
= 0.60 0.40 0.60 0.10
@ Do nqt adq up to exactly 1 when A 035 065 0.5 0.05
combined in quadrature X 020 0.65 0.75 0.10
— non-Gaussian nature of distributions 5 822 8;2 8;3 88(;

— FV taken as correction, not contribution to the error
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V,ys| from experiment and the lattice

|Vus| is determined from K — w/v and K — ui(~)

Precision tests of CKM unitarity/quark-lepton universality and constraints on NP from
Gg My
G—g “Vud|2 + ’Vus|2 + ’Vub|2} — {1 + O <—W)]
vk

Large amounts of new data: BNL-E865, KLOE, KTEV, ISTRA+, NA4S

Currently
@ |Vug| = 0.97425(22) [0.02%] from nuclear 3 decays (Hardy & Towner '08)
o Vus| = 0.2246(12) [0.5%] from Ki3 (Flavianet '07)
o Vus/Vud| = 0.2321(15) [0.6%] from Ko (Flavianet '07)
@ |Vu| = 3.87(47) - 103 [12%)] (crvitter 09)
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V,ys| from experiment and the lattice

0.230F [lavi A
) netKaon WG . .
> 1 £,(0) = 0.9644(49) Combined fit (update on Flavianet '07)

| /= 1.189(7)

@ |Vug| = 0.97425(22) [0.02%)]
= §|Vuw|* =4.3-107*

@ |Vus| = 0.2252(9) [0.4%]
= §|Vus|* =4.2-107*

@ and |Vp|*~ 151077

0.225

0.970 0975V,

= §|Vus| and §|Vyq| contribute equally to total uncertainty
Find

Vud|® + [Vus|® + |Vup|* = 0.9999(6) [0.06%)]

= cannot exclude NP w/ scale Anp > 3 +-2TeV @ 1 + 30
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Vus| from K — ui

Marciano '04: window of opportunity (eoc 0s)

MK — W(v))) Vus| Fx 0.2757(7) [0.25%]

M(m — pui(y) Vud| Fr
Need:

@ Fy /F: to 0.5% to match K — w/v determination (assuming that systematics in
that determination are controlled to that level)

@ Fy /Fx to 0.25% to match experimental error in K — ui(y)/m — pir(7y)

Also
2 M2
@ F/Fr =140 (—MKAZMW)
@ On lattice, get Fx from e.qg.
1 _ _ 0|57ys70u|K *(0))(K*(0)|Tysd|0)
Caop (1) = 753 > {[Bysv0u] (x)[T758](0)) "= 015704 (2lz/>li (0)1t50]0) ¢ -t
%

and

(0|5~50u|K T(0)) = v2Mk Fx
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Fk /F. from the lattice: preliminary results

Ddrr, Fodor, Hoelbling, Katz, Krieg, Kurth, Lellouch, Lippert, Szabo, Vulvert (BMW Coll.) Lattice '08

N;=2+1 & a ~ 0.065, 0.085,0.125fm

1.25F ' ' ' B M, : 190 — 570 MeV, LM, > 4

: — + &0.125fm

1.2 4 — = a=0.085fm |
—— * a=0.065fm

a=0

Large variety of SU(2) and SU (3) fits w/ 600 MeV,
470 MeV and 420 MeV cuts on M

a2 or a terms included

LL|: 1.15

2-loop FV corrections (Colangelo et al '05)

1.1+ many fit times, etc.

o Analyses done w/ 2000 boostrap samples
1.05¢ Create distributions for central value and stat. error from
different procedures weighed by fit CL

o1 o'.22 0.3
M_IGeV']

Median of central value and stat. error distributions —
final value and stat. error

Central 68% — systematic error
(BMW ’'08)

(Fit w/ M = 470 MeV)

< 2% extrapolation to physical point

Fk /Fx = 1.19(1)(1)
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Fk /F. from the lattice: unquenched summary

| | A |
@+ ETMC 07
N, =2
f e ETMC’08
| e NPQoDUOB()
N, = 2+1 HPQCD/
f i UKOCD 07 (*)
(MILC) MILC 07 (*)
Aubin et al *08
= RBC/UKQCD 08 (*
N =2 CIUKQCD "08 (*)
R PACS-CS’08
e BMW 08
T F/F_=1.194(3)(10)
! . | L L . !
115 12 1.25 13 135
F/F
Tt
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§(Fk /F)* = 0.8% <

§(Fk /Fr — 1) ~ 5%

relative accuracy on calculated
SU(3) breaking effect much better

than for {<" (0)

still leads to larger theory error on
Vus| (1.3% vs 0.5%)

Fk /F straightforward to calculate

should soon be able to reach the
6(Fk /Fr — 1) ~ 1.5% required for
6™ Vus| ~ 0.25%, i.e. today’s
experimental accuracy



Conclusion

@ Lattice QCD simulations have made tremendous progress in the last few years

@ It is now possible to perform 2 + 1 flavor lattice calculations that allow to reach
the physical QCD point (M, = 135Mé&V/,a — 0, L — o0)

@ The light hadron spectrum, obtained w/ a 2 + 1 flavor calculation in which
extrapolations to the physical point are under control, is in excellent agreement
with the measured spectrum

@ A calculation of Fx /F, in the same approach should allow for a very competitive
determination of |V,s| as well as stringent tests of the SM and constraints on NP

@ Many more guantities are being computed: individual decay constants, quark
masses, other strange, charm and bottom weak matrix elements, etc.

— highly relevant for flavor physics
@ The age of precision nonperturbative QCD calculations is finally dawning
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Our “particle accelerators”

= ]

IBM Blue Gene/L (JUBL), FZ Jiilich
45.8 Tflop/s peak

IBM Blue Gene/P (JUGENE), FZ Jilich
223 Tflop/s peak

IBM Blue Gene/P (Babel), IDRIS Paris
139 Tflop/s peak

And computer clusters at Uni. Wuppertal and CPT Marseille
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Stability of algorithm

Histogram of the inverse iteration number, 1/ncg, 020} |
of our linear solver for Ny =2 + 1, M; ~ 0.21 GeV 015 i
and L ~ 4 fm (lightest pseudofermion) 0.10f

Good acceptance

T
0.4430}
0.4425f
0.4420F

0.4415F m

A
0.3

Durr et al (BMW Coll.) arXiv:0802.2706

----------------------
[ action, residue 107 ]

25} ]
0 52 M M force, residue 5-1077

LA

0 0.1 0.2 0.3 0.4 0.5
1000/TLCG

Metastabilities as observed for low M., and coarse a
in Farchioni et al '05?

Plaguette (P) cycle in Ny = 2 4+ 1 simulation w/
M, € [0.25,0.46]GeV, a ~ 0.124fmand L ~ 2fm:

@ down from configuration with random links
@ up from thermalized config. at M, ~ 0.25 GeV
@ 100 + ~ 300 trajectories

=- no metastabilities observed

= canreach M, < 200Me/, L >4fmanda < 0.07fm!
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Does our smearing compromise locality of Dirac op.?

Two different forms of locality: our Dirac operator is ultralocal in both senses

Q >, »(x)D(x,y)i(y) and D(x,y) = 0 for [x — y| > a — no problem
@ D(x,y) depends on U, (x + z) for |z| > a — potential problem
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