Fermions excités et quêtes de nouvelles sous-structures de la matière

TRINH Thi Nguyet - postdoc

Laboratoire de Physique Nucléaire et de Hautes Energies - Paris

Contenu

- Compositeness et fermions excités dans les collisionneurs
- Recherche de fermions excités F*
 - **Solution** Recherche de e^* , v^* , q^* à HERA
 - ▲ État des recherches de F* à LEP, TEVATRON
 - Sensibilité aux F* au LHC , ILC ou LHeC ?

• Conclusion et perspectives

États excités/exotiques: Pourquoi ?

C Le MS décrit très bien les mesures expérimentales,

mais pose des questions cruciales

Dans MS:

 brisure de symétrie électrofaible est responsable de la masse des particules

- la brisure de symétrie vient du mécanisme de Higgs
 - ou/quel est le boson Higgs?
 (M_{Higgs} < 114.4 GeV a 95% CL)

Ouestions auxquelles le MS ne répond pas:

Compositeness et fermions excités - I

• Existence de sous-structures aux fermions ?

mais la nature exacte de ces sous-structures n'est pas connue

nous allons plutôt nous intéresser aux conséquences possibles de l'existence de telles sous-structures

une des conséquences serait l'existence d'états excité (F*) des fermions

Compositeness et fermions excités - II

- **1**^{ère} approche
 - Fermions excités F* organisés en iso-doublet (e*,v*)

[Hagiwara et al. ZPC 29(1985)115]

[Boudjema et al. ZPC 57(1990)425]

- F* se couplent avec bosons de gauge et fermions ordinaires (FF*V) , par l'interaction de Gauge Mediated (GM)
- Lagrangien effectif :

$$\mathcal{L}_{GM} = \frac{1}{2\Lambda} \bar{F}_R^* \sigma^{\mu\nu} \begin{bmatrix} g f \frac{\tau^a}{2} W_{\mu\nu}^a + g' f' \frac{Y}{2} B_{\mu\nu} + g_s f_s \frac{\lambda^a}{2} G_{\mu\nu}^a \end{bmatrix} F_L$$

$$SU(2) \qquad U(1) \qquad SU(3)$$

• Paramètres: échelle de sous-structure Λ , couplage de gauge f, f',f_s et masse M_{F*}

Pour diminuer le nombre de paramètres: hypothèse d'une relation entre f, f'

f = -**f**' et **f** = +**f**'

N. Trinh - LPNHE

Fermions Excités

F*

Compositeness et fermions excités - III

- Existence de sous-structure : se manifeste par des interactions de contact (CI)
 - Seconde approche pour coupler fermions excités F* et fermions F [Baur et al. PRD 42(1990)815]
 - Lagrangien quatre-fermions effectif : $\mathcal{L}_{CI} = \frac{4 \pi}{2\Lambda^2} j^{\mu} j_{\mu}$ q q $j_{\mu} = \eta_L \bar{F}_L \gamma_{\mu} F_L + \eta'_L \bar{F^*}_L \gamma_{\mu} F_L^* + \eta''_L \bar{F^*}_L \gamma_{\mu} F_L + h.c. + (L \rightarrow R)$ • Ici, Λ est supposé être le même que dans le Lagrangien de GM
 - Facteurs: $\eta_{\rm L} = 1$ et $\eta_{\rm R} = 0$ (par convention)

Production possible de e* par une combinaison de GM et CI ensemble

La frontière de grande énergie avec o(1fb⁻¹) (1990-2010)

0.21 TeV, ~0.9 fb⁻¹/exp.

LEP

1.96 TeV, ~2.5 fb⁻¹/exp.

~2 fois plus attendu jusqu'à 2009

actuelement presque tous résultats basés sur $\sim 1 \text{ fb}^{-1}$

0.32 TeV, ~0.5 fb⁻¹/exp. ...s'est arrêté en Juin 2007

N. Trinh - LPNHE

La frontière de grande énergie ...

14 TeV

~ 1 fb⁻¹/exp. attendu dans 2009 ?!

0.5 TeV

1.4 TeV - 2 TeV
~10 - 1 fb⁻¹/ans attendu..
(un projet proposée)

If a hadron collider will be built in the LEP tunnel then ep collisions are really a must (G.Altareli et al., Lausanne LHC Workshop 1984, Proc.p549)

N. Trinh - LPNHE

F* via GM dans les collisionneurs -I

La production et désintégration de la 1ère famille F* à HERA

F* via GM dans les collisionneurs -II

- La production et désintégration au LEP
 - Production simple du F*, via voie-s et voie-t:

Production d'une paire du F*:

- → Découverte jusqu'à M* $\sim \sqrt{s}$ = 209 GeV
- → Pour toutes les familles

 → Voie-t: mécanisme de production similaire à celui de HERA, avec plus grande section efficace et plus faible bruit de fond mais plus faible énergie dans le centre de masse que HERA

- → Découverte jusqu'à M* $\sim \sqrt{s/2} = 105 \text{ GeV}$
- Pour toutes les familles
- Recherche indirecte:

Pour la 1ère famille seulement

N. Trinh - LPNHE

F* via GM dans les collisionneurs -III

La production et désintégration au TEVATRON

Production simple de la 1ère famille de F* :

 L'autre F* analysé : muon excité (μ*), mais via l'interaction de contact seulement

N. Trinh - LPNHE

Leptons excités @LEP

 Limites déduites pour un niveau de confiance de 95% (toutes les données sont analysées)

Muon excité @Tevatron

• Avec 2ème approche : production μ^* via CI et sa désintegration via GM

Neutrino excité @HERA : production & désintégration

Cannal	Signature	Bruit de fond MS
$\nu^* \to \nu \gamma$	$\gamma + P_T^{miss}$	Radiative CC DIS
$\nu^* \to \nu Z_{\hookrightarrow qq}$	$P_T^{miss} + 2 \text{jets}$	CC DIS + 2jets
$\nu^* \to eW_{\hookrightarrow qq}$	electron + 2jets	NC DIS $+ 2jets$
$\nu^* \rightarrow \nu Z_{\rightarrow ee}$	$2 \text{ electrons} + P_T^{miss}$	NC DIS, W production
$\nu^* {\rightarrow} e W_{{\hookrightarrow} e \nu}$	$2 \text{ electrons} + P_T^{miss}$	NC DIS, W production
$\nu^* {\rightarrow} e W_{{\hookrightarrow} e\mu}$	electron + muon + P_T^{miss}	$\gamma\gamma \rightarrow ll$

<u>Note</u>: $\sigma(e^{-}p) / \sigma(e^{+}p) \sim 10^2$

Rapport de branchement analysé ~ 90%

Ne	utrino excité : la méthode			
$v^* \text{ MC event}$ $v^* \rightarrow v v$				
• amas e.m isolé (γ) et 1 jet $P_{\tau}^{jet} > 5$ GeV				
	• 1 neutrino (ν) non-detecté, $P_{T}^{miss} > 20 \text{ GeV}$			
iets	coupures pour réduire courant chargé (bruit pri	incipal)		
	> P_{T}^{γ} > 20 GeV + coupures cinématiques suppléme	entaires		
$v^* \rightarrow eW$				
v* MC event	• 1 electron, P $_{\tau}^{e}$ > 10 GeV			
	• 2 jets, P ₁ ^{jet1, jet2} > 20, 15 GeV			
Jet	 + coupures pour réduire courant neutre 			
	> un candidat W est formé des 2 jets de	е		
	masse invariante la plus proche de M_w			
jet	v 7			
	1 neutrino non-détecté, P ₁ ^{miss} > 20 GeV			
jet	• 2 jets, $P_{\tau}^{jet1, jet2} > 20,15 GeV$			
	 + coupures pour réduire courant chargé 			
	un candidat Z est formé des 2 jets d	e		
y jet	masse invariante la plus proche de M			
v^* MC event	Fermions Excités	15		

Résultats de la recherche de v^*

• Nombres d'événements finaux dans chaque canal :

Search for ν^* at HERA $(e^-p, 184 \text{ pb}^{-1})$					
Channel	Data	All SM	Signal Efficiency		
$\nu^* \to \nu \gamma$	7	12.3 ± 3	50 - 55%		
$\nu^* \to \nu Z_{\hookrightarrow qq}$	89	95 ± 21	25 - 55%		
$\nu^* \to eW_{\hookrightarrow qq}$	220	223 ± 47	40 - 65%		
$\nu^* \rightarrow \nu Z_{\rightarrow ee}$	0	0.19 ± 0.05	45%		
$\nu^* \rightarrow eW_{\rightarrow e\nu}$	0	0.70 ± 0.1	45%		
$\nu^* \rightarrow eW_{\rightarrow e\mu}$	0	0.40 ± 0.05	35%		

• Distributions de masse invariante pour les 3 canaux principaux:

Events

Limites sur f/ Λ pour v^*

- Limites déduites au niveau de confiance de 95%
- Limites finales de H1 comparées avec limites précédentes de H1 et celles du LEP

Phys. Lett. B663, 328, 2008

- 🔌 Amélioration par rapport à HERA I
- Your les masses au-delà de la portée du LEP: meilleure sensibilité

N. Trinh - LPNHE

Electron excité @HERA : production & désintégration

Cannal	Signature	Bruit de fond MS
$e^* \rightarrow e\gamma$	2 e.m clusters	QED Compton, NC DIS
$e^* \rightarrow eZ_{\rightarrow q\bar{q}}$	electrons + 2jets	NC DIS $+ 2jets$
$e^* \rightarrow \nu W_{\hookrightarrow q\bar{q}}$	P_T^{miss} +2jets	CC DIS + 2jets
$e^* \rightarrow \nu W_{\hookrightarrow e\nu}$	$electron + P_T^{miss}$	CC DIS, W production
$e^* \rightarrow e Z_{\rightarrow \nu\nu}$	$electron + P_T^{miss}$	CC DIS, W production
$e^* \rightarrow eZ_{\rightarrow ee}$	3 electrons	$\gamma\gamma \rightarrow ll$
$e^* \rightarrow eZ_{\rightarrow \mu\mu}$	electron + 2 muons	$\gamma\gamma \rightarrow ll$

100

 \rightarrow Canaux hadronique semblables à v^*

8 90 • Si f = -f', $C_{ve^{*e}} = 0$: BR Total BR analyzed 80 ↘ section efficace très faible 70 $e^* \rightarrow v W$ ($\sigma_{\rm (f=+f')}=7.3\times10^{-3}\,{\rm pb}, \sigma_{\rm (f=-f')}=7.8\times10^{-6}\,{\rm pb}$ 60 50 pour Me*=200 GeV) 40 $\mathbf{e}^* \rightarrow \mathbf{e} \gamma$ seulement le cas f = +f' est étudié 30 20 $e^* \rightarrow e Z$ Rapport de branchement analysé ~ 90% 10Ē 0 100 150 200 250 300 e* Mass [GeV]

Electron excité : la méthode...

$e^* \rightarrow e_{\gamma}$ (le meilleur canal)

- au moins 2 amas e.m. isolés: $P_{\tau}^{e,\gamma} > 20$, 15 GeV
- + coupures pour réduire les bruits de fond QED Compton & Courant Neutre
- séparation en élastique $E_{h} < 5$ GeV / inélastique $E_{h} > 5$ GeV
 - meilleure sensibilité (sources de bruit de fond différentes)

Electron excité : résultats ...

• Distributions de masse invariante pour les 3 canaux principaux:

Limites sur f/ Λ pour e*

• Limites déduites pour chaque canal pour un niveau de confiance de 95%

Phys. Lett. B666, 131, 2008

par le canal $e^* \rightarrow e_{\gamma}$

Me* < 272 GeV sont exclues

- étend les résultats précédents de HERA et du LEP
- plus faibles valeures sondées de f/ Λ que le TEVATRON 5

Electron excité : la source d'interaction de contact?

interprétation avec une production de e* par GM & CI ensemble

(pour simplification, Λ est considéré être le même dans CI et GM)

→ Section efficace totale de production $\sigma^{CI+GM} = \sigma^{GM} + \sigma^{CI} + \sigma^{interf}$ (par convention, $\eta_{\mathbf{R}} = \mathbf{0}$, $\eta_{\mathbf{I}} = \mathbf{1}$, $\mathbf{f} = \mathbf{f'} = \mathbf{1}$)

Desintégration d'e* :

 \square dans le domaine Λ =4 TeV et Me* < 200 GeV, décroissances par GM sont dominantes

 \Box dans ce cas : σ ^{interf} est destructif

Limite sur 1/ Λ pour l'interaction de contact

Limite sur 1/A, pour GM et pour (GM+CI)

▲ Que gagne t-on en ajoutant l'interaction de contact (CI) à celle de gauge dans les collisions ep?

Limite sur 1/Λ augmente seulement d'un facteur de 1.15 si l'interaction de contact est considérée

Recherche de quark excité @HERA

Aucune déviation significative

Quark excité : résultats ...

- Limites déduites :
 - **1** pour f=f', f =0 et Λ =Mq*

Presque soumis à Phys. Lett. B

Fermions Excités

CDF f_s = 0.1

H1

260

240

2 suppose f=f' et Λ =Mq*, limites déduites

▶ Pour la production simple du l*: avec l'hypothèse (f=f'et Λ =M*), le LHC sera capable d'étendre considérablement les contraintes actuelles en sondant des masses l* jusqu'au **1-2 TeV**

➔ Production d'une paire de l*

Auprès du collisionneur ILC (avec √s ~ 500 GeV) [Phys. Rev D 56 (1997) 2920]
 Vne sensibilité comparable au LHC pourrait etre atteinte à l'ILC

• Auprès du collisionneur LHeC (avec $\sqrt{s} \sim 0.8$ TeV ou 1.4 TeV ou 2 TeV)?

N. Trinh - LPNHE

Limites sur f/ Λ pour e*, v^* @LHC

- Les résultats obtenues dans le cas de la production simple des leptons excités
- Limites sont combinées, pour les 2 hypothèses: f=-f' et f=+f'

[Phys. Rev. D65 (2002) 075003]

N. Trinh - LPNHE

Quarks excités à LHC

• O. Çakir et al. ATL-PHYS 2000-030, 1999-024, 1999-002 et : $q^* \rightarrow q\gamma$, qW, qZ, qg

• Sensibilité ausignal de q* déduite pour toutes les topologies

Avec L=100 pb⁻¹, par example, la masse pourrait être sondée jusqu'à 3.7 TeV pour $q^* \rightarrow qW$ et jusqu'à 2 TeV pour $q^* \rightarrow qZ$ et jusqu'à 3.2 TeV pour $q^* \rightarrow qg$

LHeC : "Large Hadron-Electron Collider"

LHeC : La diffusion profondément inélastique au LHC

**** énergie du centre de masse du LHeC $\sqrt{s} = 1.4$ TeV (Ee,p=70GeV, 7TeV) 5 fois plus grand que HERA

LHeC étend le domaine cinématique de la structure partonique de noyaux (de 3-4 ordres de grandeur de magnitude)

▲ La sensibilité aux fermions excités dans les collisions ep avec une grande luminosité ($\sqrt{s} = 0.8$ TeV, 1.4 TeV ou 2 TeV) ?

- Si la production d'e* via GM ?
- Si la production d'e* via Cl ?
 - Quelle serait l'importance de la source CI ?

Leptons excités @LHeC

• Section efficace totale de la produciton simple de l* via <u>GM</u> au LHeC

➔ Comparaison avec HERA et LHC

▶ Section efficace de la production simple de leptons excités est grande dans les collisions ep LHeC

LHeC aurait sensibilité unique aux fermions excités

Electron exicté @LHeC : $e^* \rightarrow e_Y$

• Estimer la sensibilité de e*@LHeC en utilisant le canal $e^* \rightarrow e_{\gamma}$:

- Rapport de branchement étudié ~35%
- 🖌 Mais signature très claire, faible bruit de fond

(normalisation Signal/SM arbitraite) resolution Me* = 3% Me* Limites attendues d'e* @LHeC

e* Mass [GeV]

Sensibilité attendue du LHeC est plus stricte que les autres collisionneurs

- Si LHC découve un e* : LHeC serait sensible à plus bas couplages f/ Λ
- Découverte potentielle pour les basses masses

Peu de changement de la sensibilité du LHeC si l'interaction de contact est considérée

N. Trinh - LPNHE

Conclusion et Perspectives

• État de la production de fermions excités après les collisionneurs (HERA, LEP, TEVATRON) a été revue

🔌 Pas encore découverte

LERA : toutes les données H1 ont été utilisées pour une recherche de fermions excités (e^{*}, v^* , q^{*})

- HERA :nouveaux domaines explorés
 - → les plus strict limites au monde sur hautes masses de l*
 - → sensibilité mieux que TEVATRON pour basses M* et fs<0.1</p>
- La production e* via CI+GM ensemble a été étudiée

• Sensibilité aux futurs collisionneurs (LHC, ILC, LHeC) a été présentée

- LHC : la production de F* par CI sera une source importante
- ILC : la sensibilité serait la même que LHC

LHeC (s'il voit jour) : la sensibilité pour leptons excités serait plus grande que LHC et ILC

**** Une chance pour une découverte?

Backup slides

Interaction de contact - e*

• TEVATRON : production CI dominates sur production GM, interference term ne pas etre considéré

HERA : production GM dominates sur production CI, interference term etre considéré (et dans nos cas, interference term est negative)

☑ Et desintegration : GM dominates sur CI

Limite HERA ne depende pas beaucoup a CI, au contraire au cas de TFVATRON Fermions Excités N. Trinh - LPNHE

q*@HERA : Limites avec fs !=0

• Plot par convention de l'analyse du Tevatron : f=f'=fs et $\Lambda=Mq^*$

e* @LHeC via Interaction de contact

• Section efficace totale de la production e* via CI au LHeC

▲ Dans les collisions ep (HERA, LHeC): source principale de la production e* est dominée par GM

▲ Dans les collisions pp (Tevatron, LHC): source pricipale de la production e* est dominée par Cl

Limite attendue sur $1/\Lambda$ au 95% C.L

 Que gagne t-on en ajoutant l'interaction de contact (CI) à celle de gauge dans les collisions ep?

> Peu de changegement de la sensibilité du LHeC si l'interaction de contact est considérée

Limites en fonction de f'/f pour v^*

Total: ~ 0.5 fb⁻¹ w utilisés pour la recherche de processus rares & exotiques ($\sigma < 1$ pb)

Principaux processus du MS à HERA

• Photoproduction: $\gamma p \rightarrow X (\sigma^{direct}=14292 pb)$

• Courants Neutres (CN): $ep \rightarrow e$ ($\sigma=7619 \text{ pb}$)

• Courants Chargés (CC): $ep \rightarrow v X (\sigma^{e})$

N. Trinh - LPNHE

Fermions Excités

• QED Compton: $ep \rightarrow e\gamma X$ ($\sigma^{elast}=98 pb$) • γ / Z • q

• Production de paire de leptons: ep \rightarrow ell X ($\sigma^{inelas}=26$

pb)

 $\sim \mu$

• Production de W: $ep \rightarrow eW X$

(*σ*=0.05 pb

$\Lambda_{LL}^+(eeee) > 3.1 \text{ TeV}$	OPAL
$\Lambda_{LL}^{-}(eeee) > 3.8 \text{ TeV}$	
$\Lambda_{LL}^+(ee\mu\mu) > 7.3 \text{ TeV}$	OPAL
$\Lambda_{LL}^{-}(ee\mu\mu) > 4.6 \text{ TeV}$	
$\Lambda_{LL}^+(ee\tau\tau) > 3.9 \text{ TeV}$	OPAL
$\Lambda_{LL}^{-}(ee\tau\tau) > 6.5 \text{ TeV}$	
$\Lambda_{LL}^+(llll) > 6.4 \text{ TeV}$	OPAL
$\Lambda_{LL}^{-}(llll) > 7.2 \text{ TeV}$	
$\Lambda_{LL}^+(\nu\nu qq) > 5.0 \text{ TeV}$	NUTEV
$\Lambda_{LL}^{-}(\nu\nu qq) > 5.3 \text{ TeV}$	
$\Lambda_{LL}^{\pm}(qqqq) > 2 \text{ TeV}$	D0
$\Lambda_{LL}^+(\mu\mu qq) > 1.4 \text{ TeV}$	CDF
$\Lambda_{LL}^{-}(\mu\mu qq) > 1.6 \text{ TeV}$	