

Batch Queueing System (BQS) Overview

Fabio Hernandez fabio@in2p3.fr

Lyon, June 30th 2006

- Context
- Brief history of BQS
- Current status
- Issues

Context

- Computer Centre's mission is to acquire and operate the computing resources to support scientific experiments
 - 30+ international experiments in nuclear, particle and astrophysics
 - Biomedical applications since a few years
- 20+ years record providing computing services roundthe-clock
 - Mainframe based in until early 90s, Unix-based since then
- Demand is higher than offer, so we need a resource management system
 - We must make sure that the resources we are able to buy are used to the maximum possible capabilites

F.Hernandez

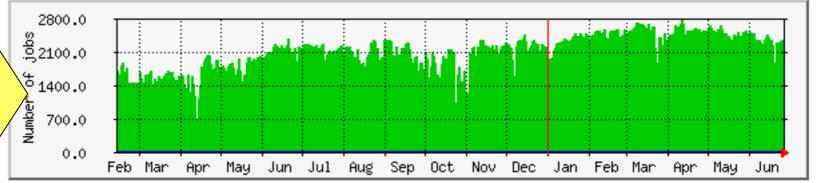
History of BQS

- Home-grown software being developed since 1992
 - Currently 2.5 FTEs work on it
- Maturity
 - First generation initially based on NASA's NQS
 - 12 worker nodes in 1992
 - Second generation: reengineered and got rid of NQS layer
 - Third generation started in early 2000s
 - Database-centric architecture
 - By the end of 2006: ~1000 worker nodes, 2000 CPUs
- Extremely well suited to our needs
 - Several experiments competing for resources
 - Several parameters for « programming » the scheduler by the operations people for meeting production targets
 - Fair-share implemented since the beginning
 - Tools for extracting accounting data available since the early days

F.Hernandez

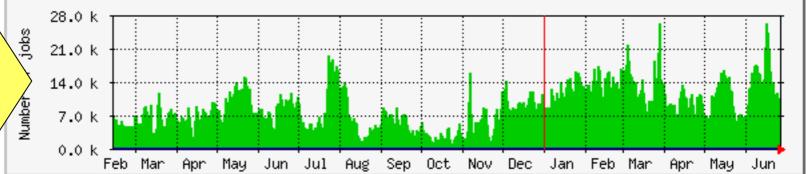
Current Status

- Database-centric architecture
 - 2 master hosts: 1 for database and another for job handling
 - Spawning, getting status reports from jobs, collecting data on job resource consumption, ...
- Some figures
 - Jobs in queue: 17.000
 - Jobs in simultaneus execution: 2.700
 - Throughput: 15.000 jobs/day



Current Status (cont.)




'Yearly' Graph (1 Day Average)

Max running jobs: 2790 Average running jobs: 2098 Current running jobs: 2360

Max queued jobs: 27 k Average queued jobs: 8921 Current queued jobs: 9507

Issues

- Based on the planned capacity of the facility, by 2010 we would need to handle
 - 6000-8000 jobs in simulatenous execution
 - 30.000-40.000 jobs in the queue
 - Throughput: 40.000 jobs/day
- So, it would be very useful fo us to
 - Have a tool to <u>predict</u> the behavior of the system well in advance
 - Currently, we <u>observe</u> how the system reacts to the load and then implement ways of improving it
 - Have a tool to allow us to <u>optimise</u> the configuration of the system based on actual load
- Tools for modeling or simulating the whole system may be needed
 - This is complex task and we don't have the neither the manpower nor the know-how to to this

F.Hernandez