Latest results of EDELWEISS-II using Ge cryogenic detectors with interleaved electrodes

Identification of Dark Matter Montpellier, 26 July 2010 Eric Armengaud - CEA / IRFU

The EDELWEISS collaboration

CEA Saclay (IRFU & IRAMIS) Detectors, electronics, acquisition, data handling, analysis

Detectors, cabling, cryogenics

CSNSM Orsay

IPN Lvon

- Electronics, cabling, low radioactivity, analysis, detectors
- Institut Néel Grenoble Cryogenics, electronics
- Karlsruhe IK,IEKP (+ IPE 2011) Vetos, neutron detectors, background, electronics
- JINR Dubna
 Background, neutron and radon detectors
- Oxford Univ. (2009)
 Detectors, cabling, cryogenics, analysis
- Sheffield Univ. (2010) MC simulation

The Edelweiss-II setup

- Operated at the Underground Laboratory of Modane (4µ/day/m²) - deeper than Soudan
- Goal 5x10⁻⁹ pb
- Cryogenic installation (18 mK) :
 - Reversed geometry cryostat, pulse tubes
 - Remotely controlled
 - Can host up to 40kg of detectors
- Shieldings :
 - Clean room + deradonized air
 - Active muon veto (>98% coverage)
 - PE shield
 - Lead shield
 - \Rightarrow γ background reduced by ~3 wrt EDW1
- (Many) others :
 - Remotely controlled sources for calibrations + regenerations
 - Detector storage & repair within the clean room
 - Radon detector down to few mBq/m³
 - He3 neutron detector (thermal neutron monitoring)
 - liquid scintillator neutron counter (study of muon induced neutrons)
- 12 cool-downs already operated

Edelweiss-I detectors

Germanium bolometers

1.5

lonisation/Recoil Ratio

0

0

- Ionization measurement @ few V/cm
- Heat measurement (NTD sensor) @ 20 mK

1.5

Ratio

lonisation/Recoil R

⁰ ò

200

- Discriminating variable between electronic and nuclear recoils : « Q » ~ ionization/heat
- Limitation : surface interactions

EDELWEISS

GGA1 ⁶⁰Co Calibration

nuclear recoil band

150

γ band

2002

100

Recoil Energy (keV)

50

Rejecting surface events with interleaved electrodes

First detector built 2007 1x200g + 3x400g tested in 2008 10x400g running 1 year 2009-2010

the « ID » (interdigit) detector

- Keep the EDW-I NTD phonon detector
- Modify the E field near the surfaces with interleaved electrodes
- Use 'b' and 'd' signals as vetos against surface events

Charge propagation in an InterDigit detector

• Initial expansion of the charge cloud due to Coulomb interactions is sufficient to generate charges in the vetos even in

- regions of low electric field
- regions just under the collecting electrodes [PLB 681 2009 305]

An outstanding surface event discrimination with IDs

E1 = energy of top collecting electrode *E2* = bottom collecting electrode PLB 681 (2009) 305-309 [arXiv:0905.0753]

• Estimation with electrostatic models

 Measurement with cosmogenic lines:
 - ⁶⁸Ge and ⁶⁵Zn isotope lines at ~10keV, background electron recoil events

- Homogeneously distributed in the volume of the cristal

- <u>Real-condition measurement</u> of fiducial cuts efficiencies at low energy in WIMP search conditions (baselines, voltages...) Other measurement : using neutron calibration

• Fiducial volume measurement 166g ± 6 => 160g, *primarily limited by the guard regions*

WIMP search with ID detectors

~ 20 kg.d in 2008 during validation runs of ID detectors (2 detectors)

Physics run Apr 2009 - May 2010 (10 detectors) : ~ 300 kg.d

Published : 2008 + 6 months 2009 = 160 kg.d - PLB 687 (2010) 294–298 [arXiv:0912.0805]

Preliminary results of the complete run presented here

 All detectors working
 90% electronics channels, 9/10 bolos used in the analysis presented here

Few days gamma / neutron calibrations

« One of the coldest place in the Universe » ... Continuously at 18 mK during more than 1 year !

Data analysis of the first 6 months

- 2 independent processing pipelines
- Pulse fits with optimal filtering using instantaneous noise spectra
 - Average baseline resolution heat 1.2 keV, ion 0.9 keV
- Period selection based on baseline noises
 - a 80% efficiency
- Pulse reconstruction quality (chi2)
 97%
- Fiducial cuts based on ionization signals (160g)
- 90% nuclear recoil, gamma rejection 99.99%
- Bolo-bolo & bolo-veto coincidence rejection (<1%)
- WIMP search threshold fixed a priori <u>Er > 20 keV</u> (~100% acceptance)

WIMP search : first six month result

160 kg.d x 90% NR band = 144 kg.d

EDELWEISS Coll. / E. Armengaud et al. PL B 687 (2010) 294–298 [arXiv:0912.0805]

Preliminary results from the complete data set (end of run May 20th 2010)

- Results obtained by blindly applying the published analysis to new data.
 - Second analysis ongoing (increase the kgdeff, lower threshold)
- Sensitivity increased by a factor 2 (scale with stat)

Best limit 5x10⁻⁸ pb

• 3 evts near threshold in NR band, 2 outliers at higher energies Background starts to appear ?

Background studies : ongoing

- ¹³³Ba calib rejection x observed bulk γ <1.0
- β source rejection x observed surface evts <0.2
- Neutrons from μ 's: μ veto efficiency x observed muons <0.25
- Neutrons from Pb: measured U limits x Monte Carlo simu <0.1</p>
- Neutrons from rock: measured neutron flux x Monte Carlo simu <0.1
 MC cross-check with outside strong AmBe source

SUM < 1.6 for the whole wimp run (90% CL)

Status of gamma calibrations

With 2 detectors : gaussian behaviour, no candidate event in a first analysis

Statistics x 2.5, all 10 detectors : 4 events

- ¹³³Ba calib: 134 000 evts in 20-200 keV ⇒ 0.5 event expected in 16 600 evts in WIMP run
- Knobs to improve
 - Recombination e-h ? optimise operation of polarisation voltages, regeneration procedures
 - Pile up, multisite events ? fast readouts on ionisation, 2 NTD heat measurements, segmentation

July 3rd : 4 FID800+2 FID400 installed at LSM

800 g detector, 2 NTD, 6 electrodes2 « fiducial » volumes218 ultrasonics bondings / detector

Cool-down started July 15th

Edelweiss: summary / prospects

- Edelweiss new-generation ID detectors :
 - Robust detectors with redundancy and very high beta rejection
 - Preminary analysis of 1 year data =>
 - No hint of WIMPs
 - 5x10⁻⁸ pb sensitivity achieved
- New Goal 5x10⁻⁹ pb
 - Improvements wrt future backgs
 - Increased redondancy for ionisation and heat measurements
 - Fast readout (multisite, pile up)
 - Lower μ phonics, internal PE shield
 - New prototypes FIDs 800g now working at LSM
 - 2011 = 1000 kg.d
 - Build 40 detectors, upgrade set-up
 - 2012 = 3000 kg.d

