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@ Leptophilic Dark Matter
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Why leptophilic Dark Matter?
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plots from PAMELA 0810.4995 + Thomas Schwetz’ talk
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Leptophilic DM formalism

PO e p, x> Ky, e p,

eff_Zexr (riey  with G-

/\2
Possible Lorentz structures:
scalar/pseudoscalar: T, = c§ + icjys, Fo = C§ + ichys,
vector/axial vector: T = (¢ + cyvs)7", Cop = (CY + C478) V0,

tensor/axial tensor: T\ = (cr + icary5)o™”, T = 0w,

Ony S® S, Ve V,A® A, T ® T not velocity-suppressed — neglect others.

Leptophilic DM model: Fox Poppitz 0811.0399
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© Ssignals of leptophilic WIMPs
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4 things a leptophilic WIMP can do in a detector

@ Scattering on an electron

» Quter-shell electrons can be kicked out (WIMP-electron scattering)

» Inner-shell electrons will remain bound (elastic WIMP-atom scattering)
— recoil transferred to nucleus

» Electrons can be excited to an outer shell, but remain bound
(inelastic WIMP-atom scattering) — recoil partly transferred to nucleus
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4 things a leptophilic WIMP can do in a detector

@ Scattering on an electron
» Outer-shell electrons can be kicked out (WIMP-electron scattering)
» Inner-shell electrons will remain bound (elastic WIMP-atom scattering)
— recoil transferred to nucleus
» Electrons can be excited to an outer shell, but remain bound
(inelastic WIMP-atom scattering) — recoil partly transferred to nucleus

@ Loop-induced scattering on the nucleus

v N7,

N, pu X K
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WIMP-electron scattering

@ Bound electrons are in energy eigenstates,

but not momentum eigenstates.

— Include electron wave function x(p) in matrix element calculation
@ For detectable recoil, need scattering on high-momentum tail of x(p)

10°°F 1
& 108 J
3
= 10710 |
=
=
& 1012 1

1014k

10716

(approximate wave functions, neglecting relativistic corrections and multi-electron correlations)

Rate suppressed by n’?—; (bound state kinematics) and by |x(p)[? (wave
function at p 2 1 MeV/c) compared to rate for “standard” nucleophilic WIMPs.
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Loop-induced WIMP-nucleus scattering

One-loop: Lowest order diagramfor Vo V, T® T

N, p,

Rate suppressed by loop factor «Z /7 compared to rate for “standard”
nucleophilic WIMPs.
— Loop-induced WIMP-nucleus scattering dominates when it is allowed.

Two-loop: Lowest order diagram for S® S

XK, N,p, Xk,

X ku N, pu X ku
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A® Aand V ® V as representative cases

In the following, we will consider only

@ A® A as an example for scenarios where WIMP-electron scattering
dominates

@ V ® V as an example for scenarios where WIMP-nucleusn scattering
dominates

All other Lorentz structures are phenomenologically equivalent to either A® A
orVeV.
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© Fitting direct detection experiments
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Annual modulation and m-o exclusion plot for A A
(Dominated by WIMP-electron scattering)

Fit to DAMA modulation spectrum + total rates constraint

0.061 “ 02=5. ><‘10’31 cm?, m, ‘: 816.Gev |4 F Leptophilic DM,‘Axial vector interactions
1 2 3 Scattering on bound electrons
' x?=559 105 1
— 004 U |--- 09250110 cm?, m, = 202. GeV ] wa
k- G | i R ]
3 o 1 HHH{ MHEMME m;f} % 07 =
& -0.02 w/o 1% bin 1 v =
_ooal Full analysis 10—352
0 5 10 15 2
E [keV] r
107} ‘ | §
10 10? 10°
m, [GeV]
@ Signal in DAMA from inelastic WIMP-electron scattering
@ Signal in CDMS/XENON from inelastic WIMP-atom scattering
@ Ay? fit formally yields allowed region, but poor quality of fit
@ Required WIMP-electron cross sections very large — other constraints?
Conclusion: In the A ® A case, leptophilic DM cannot explain DAMA J



CDMS electron recoil analysis

CDMS data DAMA, leptophilic DM, A® A
10 T
2-5* ‘, Leptophlllc DM, Axla‘ vector |nteract|ons
Energy = 8.98 keV (“Zn) 1 Scattering on bound electrons
z 8 Rate = 0.73 + 0.1 events/kg/day = 20F
3 Energy = 6.54 % 0.1 keV. W‘m 15¢
i Rate = 0.44 + 0.09 events/kg/day =
= fi
24 = 10p
2 )
P T
2 14
& 2 05
o0of, -
% S 3 0 2 4 6 8 10
Energy [keV] E [keV]

CDMS 0907.1438
e~ recoils in CDMS set tight constraint on A ® A leptophilic DM.

Assuming smooth background and Z? scaling of rate, the CDMS bound is
close to the DAMA best fit, but does not rule it out yet.
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Annual modulation and m-o exclusion plot for V @ V
(Dominated by WIMP-nucleus scattering @ 1-loop)

Fit to DAMA modulation spectrum + total rates constraint
T T

0.06F 0= 537x10% an?, m, = 124 Gev ] ’ré Leptophilic DM, Vector interactions
X2=906 1072} % P Scattering on nuclei @ 1 loop |4
S 0.04F | -~ 09=697x10"% cm?, m, = 10.6 GeV || 5 E’f’)‘ DAMA (90%/30)
3 H x?=283 é g no channeling
X< 002F { 8 : =
[ —
F o IR IR I T
L Y f{ T T
& -0.02 w/o 1% bin
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@ Same spectrum as for conventional WIMPs

@ Cannot explain the lowest DAMA bin

@ Same situation as for conventional WIMPs:
Conflict between DAMA and CDMS/XENON.

Conclusion: In the V ® V case, leptophilic DM cannot explain DAMA
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° Leptophilic Dark Matter in the Sun
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Scattering of leptophilic Dark Matter in the Sun

@ Tree level scattering on free electrons
— no suppression by wave function or atomic matrix elements
— But energy loss in each scattering process is small since me < m,,.
— Interesting feature: Strong temperature dependence
@ Loop-induced scattering on heavy nuclei dominates if allowed
(more efficient energy loss)
@ Annihilation into neutrinos very likely in leptophilic models
» SU(2): Coupling to charged leptons accompanied
by coupling to neutrinos (but: SU(2) broken)
» Loop level annihilation into neutrinos unavoidable
» Vo V,AQV, T T,AT®T,S®S,and P® S:
Loop level annihilation into all SM quarks and leptons

@ One way to jeopardize interesting annihilation signals: x-x asymmetry.

see e.g. Kaplan, Luty, Zurek, 0901.4117 for a recent work on asymmetric DM
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Resulting Super-K bounds
AR A

T

Leptophilic DM, Axial vector interactions
Scattering on bound electrons
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@ Super-K by far the most
sensitive experiment

@ Excludes DAMA-favored
region
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Resulting Super-K bounds

A® A VoV
F [ ’ Leptophilic DM ,‘Axial Vvector interactions ?(n Leplophilic‘ DM, Vector interactions
Scattering on bound electrons 10742} ZCZ> < Scattering on nuclei @ 1 loop |4
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Resulting Super-K bounds

AR A VoV
F ‘ Leptophilic DM ,‘Axial Vvector interactions T—é Leplophilic‘ DM, Vector interactions
3 Scattering on bound electrons 10742} ol\o Scattering on nuclei @ 1 loop |4
10°% — | 2| b
A cDMS—HGEl“(%/"L | ?J")‘ DAMA (90%/3c7)
w ol DM% 3 no channeling
— 10-30L — (90%/30)
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10—35:
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@ Super-K by far the most @ Super-K competitive with
sensitive experiment CDMS/XENON
@ Excludes DAMA-favored @ Excludes DAMA-favored
region

regions
but remember: Super-K not as model-independent as DAMA, CDMS, XENON
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° Conclusions
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Summary

@ Leptophilic Dark Matter is a well-motivated scenario
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Summary

@ Leptophilic Dark Matter is a well-motivated scenario
@ Phenomenlogy of leptophilic Dark Matter in direct detection experiments

» WIMP-electron scattering
— strongly suppressed by smallness of e~ wave function at large p.
» Elastic WIMP-atom scattering
— Even stronger suppression from electronic matrix elements (sometimes
completely absent due to cancellations)
» Inelastic WIMP-atom scattering
— Again, strong suppression from electronic matrix elements
» WIMP-nucleus scattering — always dominant if allowed

Joachim Kopp (Fermilab) Leptophilic Dark Matter



Summary

@ Leptophilic Dark Matter is a well-motivated scenario
@ Phenomenlogy of leptophilic Dark Matter in direct detection experiments

» WIMP-electron scattering
— strongly suppressed by smallness of e~ wave function at large p.
» Elastic WIMP-atom scattering
— Even stronger suppression from electronic matrix elements (sometimes
completely absent due to cancellations)
» Inelastic WIMP-atom scattering
— Again, strong suppression from electronic matrix elements
» WIMP-nucleus scattering — always dominant if allowed
» Result: Leptophilic DM constrained by CDMS, XENON
» Cannot explain DAMA

Joachim Kopp (Fermilab) Leptophilic Dark Matter 19



Summary

@ Leptophilic Dark Matter is a well-motivated scenario
@ Phenomenlogy of leptophilic Dark Matter in direct detection experiments

» WIMP-electron scattering
— strongly suppressed by smallness of e~ wave function at large p.
» Elastic WIMP-atom scattering
— Even stronger suppression from electronic matrix elements (sometimes
completely absent due to cancellations)
» Inelastic WIMP-atom scattering
— Again, strong suppression from electronic matrix elements
» WIMP-nucleus scattering — always dominant if allowed
» Result: Leptophilic DM constrained by CDMS, XENON
» Cannot explain DAMA

@ Leptophilic Dark Matter in the Sun

» Neutrino signals almost unavoidable (except if there is a x-x asymmetry)
» Strong bounds from Super-K.
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Thank you!



A leptophilic Dark Matter model

@ U(1)ps dark sector
@ Dark Matter is a Dirac fermion charged under U(1)ps

1
Los = — 3 Fl+ X9 Dy + D, — Myx — Vos(s) ]

@ At least some SM leptons have small couplings to U(1)ps.
@ U(1)ps exchange provides Sommerfeld enhancement

Fox, Poppitz, 0811.0399
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Phenomenology of different Lorentz structures

M orl, o(xe — Xe)/age

S®S 1
S®P O(vz)
P®S O(vzmg/mi)
PP (’)(v“mﬁ/mi)
VeV 1

Ve A O(v2)
Ax V O(v?)
AR A 3
T®T 12
AT® T O(v?)

Suppression factors:
v WIMP velocity (O(1072))
me/m,  Ratio of electron mass to WIMP mass (unique to leptophilic DM!)

see also: Momentum-dependent WIMP scattering: Chang, Pierce, Weiner, 0908.3192
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Rate for WIMP-electron scattering
(Leptophilic DM, A ® A interactions)

dRWES __ 3po G? Mme
dEq — 4mm, my

Z 2me(Eq — Eg,mi) (2/+1)/(dp;7 Ixni(P)[? (Vo>

where

o = [eve Doy, aaBe B
X
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Rate for WIMP-electron scattering
(Leptophilic DM, A ® A interactions)

dRYES  3pG? m,
dEd 47TmX my

> \/2ma(Es ~Esn) 21 1) [ bt 10285

where

o = [eve Doy, aaBe B
X

Compare to the formula for standard WIMPs:

dRY 39y G?

an” 0 - o _My+my | Eqg
dE; = 2rm, I(Vipin) with v,

min mX 2 mN
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Rate for loop-induced WIMP-nucleus scattering

(V ® V case, one loop)

dR™NS  peG® [(aZ 2 5 m? 2 ST
dEd - 187rmx (7) F (q)|:|09 (F)] I(Vmin )7

where

WNS _ my + My Eq
m, 2my

min
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Rate for loop-induced WIMP-nucleus scattering

(V ® V case, one loop)

dR™NS  peG® [(aZ 2 5 m? 2 ST
dEd - 187T'mx (ﬂ') F (q)|:|09 (?)] I(Vmin )7

where

WNS _ my + My Eq

min
my, 2my

Compare to the formula for standard WIMPs:

0 2
ﬂ = SPOG I( Vr?ﬁn) Wlth Vr?ﬁn = mX - il Ed
dEy — 2mm, my, 2my
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Rate for loop-induced WIMP-nucleus scattering

(V ® V case, one loop)

dRYNS G (aZ ? o meN1? s
dEd - 187rmX <7r> F (q)|:|09 (?)] I(Vmin )7

where

WNS _ my, + My Eq
min m,, 2my

Compare to the formula for standard WIMPs:

dR? _ 3G
dEd o 27TI’TIX

1(V0. ith =
( me) Wlt lel’l mX sz

— Suppressed only by o?
— Loop-induced scattering on the nucleus will dominate

whenever it is allowed!
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Elastic WIMP-atom scattering

@ Coherent scattering on all electrons

@ Depends on atomic form factor, computable from the electron wave
functions.
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Rate for elastic WIMP-atom scattering
(A® Acase)

WAS —el = =
de = zpor(j ‘Z (nlms| /=) X|nlms‘ I(vAaS—el
o Mg

m1n

where

was—el _ My + M Eq
lel'l
my, 2my

9
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Rate for elastic WIMP-atom scattering
(A® Acase)

WAS —el = =
de = 2,00:;? ‘Z (nlms|e'k=) X|nlms‘ I(yAS el
o Mg

m1n )

where

was—el _ My + M Eq
len
my, 2my

Compare to the formula for standard WIMPs:

dRO N SpQGz

dEd - 2’/TmX I( min)

with Vo Myt My Eq
min m 2m
X N
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Rate for elastic WIMP-atom scattering

(A® Acase)
dRWAS 3POG i(K—K")X WAS—el
GEy = 2nm, ‘Z (nlms|e'( \nims) ‘ J(v)AS=ely
where

was—el _ My + M Eq
len
my, 2my

Compare to the formula for standard WIMPs:

dRO 3,0()G I( )
dEy ~ 27m, MR

with Vo Myt My Eq
min m 2m
X N

— Suppression by smallnes of matrix elements (nims|e/~%)%|nims) at
large |k — K’| (as required for Ey ~ keV)
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Rate for elastic WIMP-atom scattering
(A® Acase)

WAS —el = =
de = 2'00:3 ‘Z (nlms|e'k=) X|n/ms‘ I(yVAS =l
o Mg

m1n )

where

was—el _ My + M Eq
len
my, 2my

Compare to the formula for standard WIMPs:

0
oA 3POG I( VI?lil’l) with VI?lil’l = mX =N Ed
dE; — 2mm, my, 2my

— Suppression by smallnes of matrix elements (nims|e/~%)%|nims) at

large |E — /?’| (as required for E; ~ keV)
— Forthe A® Acase, > USy"7°us vanishes
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Inelastic WIMP-atom scattering

@ Electrons contribute incoherently
@ Requires computation of electron transition matrix elements
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Rate for inelastic WIMP-atom scattering
(A® Acase)

dRWAS_m o 3poG Z Z | nl’m |e k X|nlm>|2 I( WAS in),

dEd 27r mX nlm n'l'm’ i
where
yWAS—in _ Eg(my + my) — mnoEp
e m, 2mN(Ed = (5EB) ’
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Rate for inelastic WIMP-atom scattering
(A® Acase)

min

'WAS —in
daR SpOG Z Z | n//m|e (k— X|nlm>|2 I( Y WAS— in),

dEd 27r mX nlm n'l'm’
where
Y WAS—in _ Eg(my + my) — mnoEp
e m, sz(Ed = 5EB) ’

Compare to the formula for standard WIMPs:

dR? _ 3G
dE; ~ 27m,

02y with 0 = Mt my [ Eg
min min mX 2mN
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Discussion of inelastic WIMP-atom scattering

@ Supression due to smallness of matrix elements (r'I'm’|e/c—K)%| nim) at
large |k — k’| (as required for E4 ~ keV)

107+ 1074
10718 10718
s s
k102 % 1072p-
K3 i3
= =
E 26 k: \—26
£ 10 Ng 10
107 107
107 107
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Computation of matrix elements (r'/'m|e’K*|nim)

@ Expand e/*% in spherical harmonics and carry out angular integration:

(n'I'm'|e®¥|nim) = 4r / ar r?Ry(r) Ry (r) Z Ju(Kr) Yim(Ok, oK)
LM
><(\/%m\/(2/+1)(2/’+1)(2L+1)<(l) A é) (rf,, i I\LA>

Joachim Kopp (Fermilab) Leptophilic Dark Matter 30



Computation of matrix elements (r'/'m|e’K*|nim)

@ Expand e/** in spherical harmonics and carry out angular integration:

(n'1'm'| €%\ nim) = 4x / ar 2R (r) R (r) > _ ju(Kr) Yim(0x, ¢x)
LM

(=1)" . AN A
x m\/(2/+1)(2/+1)(2L+1)<0 0 o) (m o M>

@ Square this and use properties of Wigner-3j symbols
/11 ol | AKX 2 ’ I L 2
;‘<n1m|e \n/m)‘ :(2/+1)(2/+1)2L:(2L+1)[<0 0 0”

x {/drrzl?n/(f) F?n'/'(f)/'L(Kf)}2
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Computation of matrix elements (r'/'m|e’K*|nim)

@ Expand e¥ in spherical harmonics and carry out angular integration:

(n'1'm'| €%\ nim) = 4x / ar 2R (r) R (r) > _ ju(Kr) Yim(0x, ¢x)
LM

G ; AN A
x m\/(2/+1)(2/+1)(2L+1)<0 0 o) (m o M>

@ Square this and use properties of Wigner-3j symbols

3 (<n//’m’\e’m\n/m>‘2 =21+ 1)@ +1)) (2L + 1)[ (c/) g é) r

mm’ L

x {/drrzl?n/(f) F?n'/'(f)/'L(Kf)}2

@ Numerically tricky, but OK if done carefully (spherical Bessel transform)

Spherical Bessel transform: Sharafeddin et al., J. Comput. Phys. 100 (1992) 294
Radial wave functions Rp;/(r) taken from Bunge, Barrientos, Atom. Dat. Nucl. Dat. Tab. 53 (1993) 113
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