Leptophilic Dark Matter in Direct Detection Experiments and in the Sun

Joachim Kopp

Theoretical Physics Department, Fermilab

IDM 2010, 30 Jul 2010

in collaboration with Viviana Niro, Thomas Schwetz-Mangold and Jure Zupan based on arXiv:0907.3159 (Phys. Rev. D **80** (2009) 083502)

Outline

- Leptophilic Dark Matter
- Signals of leptophilic WIMPs
- Fitting direct detection experiments
- Leptophilic Dark Matter in the Sun
- Conclusions

Outline

- Leptophilic Dark Matter
- Signals of leptophilic WIMPs
- Fitting direct detection experiments
- 4 Leptophilic Dark Matter in the Sun
- Conclusions

Why leptophilic Dark Matter?

Anomalies in cosmic e^+ and e^- fluxes (but not in \bar{p} flux).

DM coupling predominantly to leptons?

Conflict between DAMA (electron & nuclear recoils) and other experiments (nuclear recoils only).

plots from PAMELA 0810.4995 + Thomas Schwetz' talk

Leptophilic DM formalism

$$\mathcal{L}_{\mathrm{eff}} = \sum_{i} G(\bar{\chi} \Gamma_{\chi}^{i} \chi) (\bar{\ell} \Gamma_{\ell}^{i} \ell)$$
 with $G = \frac{1}{\Lambda^{2}}$

$$G=\frac{1}{\Lambda^2}$$

Possible Lorentz structures:

 $\begin{array}{lll} \text{scalar/pseudoscalar:} & \Gamma_\chi = c_S^\chi + i c_P^\chi \gamma_5, & \Gamma_\ell = c_S^\ell + i c_P^\ell \gamma_5, \\ \text{vector/axial vector:} & \Gamma_\chi^\mu = (c_V^\chi + c_A^\chi \gamma_5) \gamma^\mu, & \Gamma_{\ell\mu} = (c_V^\ell + c_A^\ell \gamma_5) \gamma_\mu, \\ \text{tensor/axial tensor:} & \Gamma_\chi^{\mu\nu} = (c_T + i c_{AT} \gamma_5) \sigma^{\mu\nu}, & \Gamma_{\ell\mu\nu} = \sigma_{\mu\nu}, \end{array}$

Only $S \otimes S$, $V \otimes V$, $A \otimes A$, $T \otimes T$ not velocity-suppressed \rightarrow neglect others.

Leptophilic DM model: Fox Poppitz 0811.0399

Outline

- Leptophilic Dark Matter
- Signals of leptophilic WIMPs
- Fitting direct detection experiments
- 4 Leptophilic Dark Matter in the Sun
- Conclusions

4 things a leptophilic WIMP can do in a detector

- Scattering on an electron
 - Outer-shell electrons can be kicked out (WIMP-electron scattering)
 - Inner-shell electrons will remain bound (elastic WIMP-atom scattering)
 → recoil transferred to nucleus
 - ► Electrons can be excited to an outer shell, but remain bound (inelastic WIMP-atom scattering) → recoil partly transferred to nucleus

4 things a leptophilic WIMP can do in a detector

Scattering on an electron

- Outer-shell electrons can be kicked out (WIMP-electron scattering)
- Inner-shell electrons will remain bound (elastic WIMP-atom scattering)
 → recoil transferred to nucleus
- ► Electrons can be excited to an outer shell, but remain bound (inelastic WIMP-atom scattering) → recoil partly transferred to nucleus

Loop-induced scattering on the nucleus

WIMP-electron scattering

- Bound electrons are in energy eigenstates, but not momentum eigenstates.
 - \rightarrow Include electron wave function $\chi_{nl}(p)$ in matrix element calculation
- ullet For detectable recoil, need scattering on high-momentum tail of $\chi_{nl}(oldsymbol{p})$

(approximate wave functions, neglecting relativistic corrections and multi-electron correlations)

Rate suppressed by $\frac{m_e}{m_N}$ (bound state kinematics) and by $|\chi_{nl}(p)|^2$ (wave function at $p \gtrsim 1 \text{ MeV}/c$) compared to rate for "standard" nucleophilic WIMPs.

Loop-induced WIMP-nucleus scattering

One-loop: Lowest order diagram for $V \otimes V$, $T \otimes T$

Rate suppressed by loop factor $\alpha Z/\pi$ compared to rate for "standard" nucleophilic WIMPs.

→ Loop-induced WIMP-nucleus scattering dominates when it is allowed.

Two-loop: Lowest order diagram for $S \otimes S$

$A \otimes A$ and $V \otimes V$ as representative cases

In the following, we will consider only

- A
 A as an example for scenarios where WIMP-electron scattering dominates
- V ⊗ V as an example for scenarios where WIMP-nucleusn scattering dominates

All other Lorentz structures are phenomenologically equivalent to either $A \otimes A$ or $V \otimes V$.

Outline

- Leptophilic Dark Matter
- Signals of leptophilic WIMPs
- Fitting direct detection experiments
- 4 Leptophilic Dark Matter in the Sun
- Conclusions

Annual modulation and m- σ exclusion plot for $A \otimes A$ (Dominated by WIMP-electron scattering)

Fit to DAMA modulation spectrum + total rates constraint $\sigma_a^0 = 5. \times 10^{-31} \text{ cm}^2, m_V = 816. \text{ GeV}$ 0.06 $v^2 = 55.9$ 0.04 $\sigma_a^0 = 5.01 \times 10^{-31} \text{ cm}^2, m_V = 202. \text{ GeV}$ $S_m [d^{-1} \text{ kg}^{-1} \text{ keV}^{-1}]$ $\chi^2 = 20.6$ 0.02 0.00 -0.02-0.0415 20 10 E [keV]

- Signal in DAMA from inelastic WIMP-electron scattering
- Signal in CDMS/XENON from inelastic WIMP-atom scattering
- $\Delta \chi^2$ fit formally yields allowed region, but poor quality of fit
- $\bullet \ \ \text{Required WIMP-electron cross sections very large} \rightarrow \text{other constraints?}$

Conclusion: In the $A \otimes A$ case, leptophilic DM cannot explain DAMA

CDMS electron recoil analysis

E [keV]

CDMS 0907.1438

 e^- recoils in CDMS set tight constraint on $A \otimes A$ leptophilic DM.

Assuming smooth background and Z^2 scaling of rate, the CDMS bound is close to the DAMA best fit, but does not rule it out yet.

0.0

Annual modulation and m- σ exclusion plot for $V \otimes V$ (Dominated by WIMP-nucleus scattering @ 1-loop)

- Same spectrum as for conventional WIMPs
- Cannot explain the lowest DAMA bin
- Same situation as for conventional WIMPs: Conflict between DAMA and CDMS/XENON.

Conclusion: In the $V \otimes V$ case, leptophilic DM cannot explain DAMA

Outline

- Leptophilic Dark Matter
- Signals of leptophilic WIMPs
- Fitting direct detection experiments
- Leptophilic Dark Matter in the Sun
- Conclusions

Scattering of leptophilic Dark Matter in the Sun

- Tree level scattering on *free* electrons
 - → no suppression by wave function or atomic matrix elements
 - \rightarrow But energy loss in each scattering process is small since $m_e \ll m_\chi$.
 - → Interesting feature: Strong temperature dependence
- Loop-induced scattering on heavy nuclei dominates if allowed (more efficient energy loss)
- Annihilation into neutrinos very likely in leptophilic models
 - SU(2): Coupling to charged leptons accompanied by coupling to neutrinos (but: SU(2) broken)
 - ► Loop level annihilation into neutrinos *unavoidable*
 - V ⊗ V, A ⊗ V, T ⊗ T, AT ⊗ T, S ⊗ S, and P ⊗ S: Loop level annihilation into all SM quarks and leptons

One way to jeopardize interesting annihilation signals: χ-\(\bar{\chi}\) asymmetry.
 see e.g. (Raplan, Luty, Zurek, 0901.4117 for a recent work on asymmetric DM

Resulting Super-K bounds

$A \otimes A$

- Super-K by far the most sensitive experiment
- Excludes DAMA-favored region

Resulting Super-K bounds

- Super-K by far the most sensitive experiment
- Excludes DAMA-favored region

- Super-K competitive with CDMS/XENON
- Excludes DAMA-favored regions

Resulting Super-K bounds

- Super-K by far the most sensitive experiment
- Excludes DAMA-favored region

- Super-K competitive with CDMS/XENON
- Excludes DAMA-favored regions

but remember: Super-K not as model-independent as DAMA, CDMS, XENON

Outline

- Leptophilic Dark Matter
- Signals of leptophilic WIMPs
- Fitting direct detection experiments
- 4 Leptophilic Dark Matter in the Sun
- Conclusions

• Leptophilic Dark Matter is a well-motivated scenario

- Leptophilic Dark Matter is a well-motivated scenario
- Phenomenlogy of leptophilic Dark Matter in direct detection experiments
 - WIMP-electron scattering
 - \rightarrow strongly suppressed by smallness of e^- wave function at large p.
 - Elastic WIMP-atom scattering
 - ightarrow Even stronger suppression from electronic matrix elements (sometimes completely absent due to cancellations)
 - Inelastic WIMP-atom scattering
 - → Again, strong suppression from electronic matrix elements
 - ► WIMP-nucleus scattering → always dominant if allowed

- Leptophilic Dark Matter is a well-motivated scenario
- Phenomenlogy of leptophilic Dark Matter in direct detection experiments
 - WIMP-electron scattering
 - \rightarrow strongly suppressed by smallness of e^- wave function at large p.
 - Elastic WIMP-atom scattering
 - ightarrow Even stronger suppression from electronic matrix elements (sometimes completely absent due to cancellations)
 - Inelastic WIMP-atom scattering
 - → Again, strong suppression from electronic matrix elements
 - ► WIMP-nucleus scattering → always dominant if allowed
 - Result: Leptophilic DM constrained by CDMS, XENON
 - Cannot explain DAMA

- Leptophilic Dark Matter is a well-motivated scenario
- Phenomenlogy of leptophilic Dark Matter in direct detection experiments
 - WIMP-electron scattering
 - \rightarrow strongly suppressed by smallness of e^- wave function at large p.
 - ► Elastic WIMP-atom scattering
 - ightarrow Even stronger suppression from electronic matrix elements (sometimes completely absent due to cancellations)
 - Inelastic WIMP-atom scattering
 - → Again, strong suppression from electronic matrix elements
 - ► WIMP-nucleus scattering → always dominant if allowed
 - Result: Leptophilic DM constrained by CDMS, XENON
 - Cannot explain DAMA
- Leptophilic Dark Matter in the Sun
 - ► Neutrino signals almost unavoidable (except if there is a χ - $\bar{\chi}$ asymmetry)
 - Strong bounds from Super-K.

A leptophilic Dark Matter model

- U(1)_{DS} dark sector
- Dark Matter is a Dirac fermion charged under U(1)_{DS}

$$\mathcal{L}_{DS} = -rac{1}{4}F_{\mu
u}^{\prime2} + \overline{\chi}\gamma^{\mu}D_{\mu}\chi + \left|D_{\mu}\phi\right|^{2} - M_{\chi}\overline{\chi}\chi - V_{DS}(\phi) \ .$$

- At least some SM leptons have small couplings to U(1)_{DS}.
- *U*(1)_{DS} exchange provides Sommerfeld enhancement

Fox, Poppitz, 0811.0399

Phenomenology of different Lorentz structures

$\Gamma_\chi \otimes \Gamma_\ell$	$\sigma(\chi e o \chi e)/\sigma_{\chi e}^0$
$\mathcal{S}\otimes\mathcal{S}$	1
$\mathcal{S}\otimes \mathcal{P}$	$\mathcal{O}(v^2)$
$ extcolor{black}{P}\otimes extcolor{black}{S}$	$\mathcal{O}(v^2 m_e^2/m_v^2)$
$ extcolor{black}{P} \otimes extcolor{black}{P}$	$\mathcal{O}(v^4 m_e^2/m_\chi^2)$
$V \otimes V$	1
$V \otimes A$	$\mathcal{O}(v^2)$
$A \otimes V$	$\mathcal{O}(v^2)$
$A \otimes A$	3
$T \otimes T$	12
$AT \otimes T$	$\mathcal{O}(v^2)$

Suppression factors:

```
V WIMP velocity (\mathcal{O}(10^{-3}))
```

 m_e/m_χ Ratio of electron mass to WIMP mass (unique to leptophilic DM!)

see also: Momentum-dependent WIMP scattering: Chang, Pierce, Weiner, 0908.3192

Rate for WIMP-electron scattering

(Leptophilic DM, A ⊗ A interactions)

$$\frac{dR^{\rm WES}}{dE_d} \simeq \frac{3\rho_0 G^2}{4\pi m_\chi} \, \frac{m_e}{m_N} \sum_{nl} \sqrt{2m_e(E_d - E_{B,nl})} \, (2l+1) \int \frac{dp \, p}{(2\pi)^3} \, |\chi_{nl}(p)|^2 \, I(v_{\rm min}^{\rm WES})$$

where

$$I(v_{\min}^{\mathrm{WES}}) \equiv \int d^3 v \frac{f_{\oplus}(\vec{v})}{v} \, \theta(v - v_{\min}^{\mathrm{WES}}) \,, \qquad \qquad v_{\min}^{\mathrm{WES}} pprox \frac{E_d}{p} + \frac{p}{2m_{\chi}}$$

Rate for WIMP-electron scattering

(Leptophilic DM, $A \otimes A$ interactions)

$$\frac{dR^{\rm WES}}{dE_d} \simeq \frac{3\rho_0 \, G^2}{4\pi \, m_\chi} \, \frac{m_e}{m_N} \sum_{nl} \sqrt{2 m_e (E_d - E_{B,nl})} \, (2l+1) \! \int \! \frac{dp \, p}{(2\pi)^3} \, |\chi_{nl}(\textbf{p})|^2 \, \textit{I}(v_{\rm min}^{\rm WES})$$

where

$$I(v_{\min}^{\mathrm{WES}}) \equiv \int d^3 v \frac{f_{\oplus}(\vec{v})}{v} \, \theta(v - v_{\min}^{\mathrm{WES}}) \,, \qquad \qquad v_{\min}^{\mathrm{WES}} pprox \frac{E_d}{p} + \frac{p}{2m_{\chi}}$$

Compare to the formula for standard WIMPs:

$$rac{dR^0}{dE_d} \simeq rac{3
ho_0 G^2}{2\pi m_\chi} \, \emph{I}(\emph{v}_{min}^0) \qquad ext{with} \qquad \emph{v}_{min}^0 = rac{m_\chi + m_N}{m_\chi} \sqrt{rac{E_d}{2m_N}}$$

Rate for loop-induced WIMP-nucleus scattering

$$\frac{dR^{\rm WNS}}{dE_d} = \frac{\rho_0 \, G^2}{18\pi \, m_\chi} \left(\frac{\alpha Z}{\pi}\right)^2 F^2(q) \bigg[\log \left(\frac{m_\ell^2}{\mu^2}\right)\bigg]^2 I(v_{\rm min}^{\rm WNS}) \,, \label{eq:energy_energy}$$

where

$$V_{\min}^{\text{WNS}} = \frac{m_{\chi} + m_{N}}{m_{\chi}} \sqrt{\frac{E_{d}}{2m_{N}}}$$

Rate for loop-induced WIMP-nucleus scattering

$$\frac{dR^{\rm WNS}}{dE_d} = \frac{\rho_0 \, G^2}{18\pi \, m_\chi} \left(\frac{\alpha Z}{\pi}\right)^2 F^2(q) \bigg[\log \left(\frac{m_\ell^2}{\mu^2}\right)\bigg]^2 I(v_{\rm min}^{\rm WNS}) \,, \label{eq:energy}$$

where

$$v_{\min}^{\text{WNS}} = \frac{m_{\chi} + m_{N}}{m_{\chi}} \sqrt{\frac{E_{d}}{2m_{N}}}$$

Compare to the formula for standard WIMPs:

$$rac{dR^0}{dE_d} \simeq rac{3
ho_0 G^2}{2\pi m_\chi} I(v_{
m min}^0) \qquad ext{with} \qquad v_{
m min}^0 = rac{m_\chi + m_N}{m_\chi} \sqrt{rac{E_d}{2m_N}}$$

Rate for loop-induced WIMP-nucleus scattering

$$\frac{dR^{\rm WNS}}{dE_d} = \frac{\rho_0 G^2}{18\pi \, m_\chi} \left(\frac{\alpha Z}{\pi}\right)^2 F^2(q) \bigg[\log \left(\frac{m_\ell^2}{\mu^2}\right)\bigg]^2 I(v_{\rm min}^{\rm WNS}) \,, \label{eq:dRWNS}$$

where

$$v_{\min}^{\text{WNS}} = \frac{m_{\chi} + m_{N}}{m_{\chi}} \sqrt{\frac{E_{d}}{2m_{N}}}$$

Compare to the formula for standard WIMPs:

$$rac{dR^0}{dE_d} \simeq rac{3
ho_0 G^2}{2\pi m_\chi} I(v_{
m min}^0) \qquad {
m with} \qquad v_{
m min}^0 = rac{m_\chi + m_N}{m_\chi} \sqrt{rac{E_d}{2m_N}}$$

- \rightarrow Suppressed only by α^2
- Loop-induced scattering on the nucleus will dominate whenever it is allowed!

Elastic WIMP-atom scattering

- Coherent scattering on all electrons
- Depends on atomic form factor, computable from the electron wave functions.

$$(A \otimes A \text{ case})$$

$$\frac{\textit{dR}^{\text{WAS-el}}}{\textit{dE}_{\textit{d}}} = \frac{3\rho_0\textit{G}^2}{2\pi\,\textit{m}_{\chi}}\,\Big|\sum_{\textit{nlms}}\langle\textit{nlms}|\textit{e}^{\textit{i}(\vec{\textit{k}}-\vec{\textit{k'}})\vec{\textit{x}}}|\textit{nlms}\rangle\Big|^2\,\textit{I}(\textit{v}_{\min}^{\text{WAS-el}})\,,$$

where

$$V_{\min}^{\text{WAS-el}} = \frac{m_{\chi} + m_{N}}{m_{\chi}} \sqrt{\frac{E_{d}}{2m_{N}}}$$

$$\frac{\textit{dR}^{\text{WAS-el}}}{\textit{dE}_{\textit{d}}} = \frac{3\rho_0\textit{G}^2}{2\pi\,\textit{m}_{\chi}}\,\Big|\sum_{\textit{nlms}}\langle\textit{nlms}|\textit{e}^{\textit{i}(\vec{k}-\vec{k'})\vec{x}}|\textit{nlms}\rangle\Big|^2\,\textit{I}(\textit{v}_{\min}^{\text{WAS-el}})\,,$$

where

$$V_{\min}^{\text{WAS-el}} = \frac{m_{\chi} + m_{N}}{m_{\chi}} \sqrt{\frac{E_{d}}{2m_{N}}}$$

Compare to the formula for standard WIMPs:

$$rac{dR^0}{dE_d} \simeq rac{3
ho_0 G^2}{2\pi m_\chi} I(v_{\min}^0) \qquad ext{with} \qquad v_{\min}^0 = rac{m_\chi + m_N}{m_\chi} \sqrt{rac{E_d}{2m_N}}$$

$$\frac{\textit{dR}^{\text{WAS-el}}}{\textit{dE}_{\textit{d}}} = \frac{3\rho_0\textit{G}^2}{2\pi\,\textit{m}_\chi} \, \Big| \sum_{\textit{nlms}} \langle \textit{nlms}| e^{\textit{i}(\vec{k}-\vec{k'})\vec{x}} |\textit{nlms}\rangle \Big|^2 \, \textit{I}(\textit{v}_{\min}^{\text{WAS-el}}) \, ,$$

where

$$v_{\min}^{\text{WAS-el}} = \frac{m_{\chi} + m_{N}}{m_{\chi}} \sqrt{\frac{E_{d}}{2m_{N}}}$$

Compare to the formula for standard WIMPs:

$$rac{dR^0}{dE_d} \simeq rac{3
ho_0 G^2}{2\pi m_\chi} I(v_{
m min}^0) \qquad ext{with} \qquad v_{
m min}^0 = rac{m_\chi + m_N}{m_\chi} \sqrt{rac{E_d}{2m_N}}$$

 \rightarrow Suppression by smallnes of matrix elements $\langle nlms|e^{i(\vec{k}-\vec{k'})\vec{x}}|nlms\rangle$ at large $|\vec{k}-\vec{k'}|$ (as required for $E_d\sim \text{keV}$)

$$\frac{\text{d} R^{\text{WAS-el}}}{\text{d} E_{\text{d}}} = \frac{3 \rho_0 G^2}{2 \pi \, m_\chi} \, \Big| \sum_{\text{nlms}} \langle \text{nlms} | e^{\text{i} (\vec{k} - \vec{k'}) \vec{x}} | \text{nlms} \rangle \Big|^2 \, \text{I} (\textit{v}_{\text{min}}^{\text{WAS-el}}) \, , \label{eq:delta_el}$$

where

$$v_{\min}^{\text{WAS-el}} = \frac{m_{\chi} + m_{N}}{m_{\chi}} \sqrt{\frac{E_{d}}{2m_{N}}}$$

Compare to the formula for standard WIMPs:

$$rac{dR^0}{dE_d} \simeq rac{3
ho_0 G^2}{2\pi m_\chi} I(v_{
m min}^0) \qquad ext{with} \qquad v_{
m min}^0 = rac{m_\chi + m_N}{m_\chi} \sqrt{rac{E_d}{2m_N}}$$

- \rightarrow Suppression by smallnes of matrix elements $\langle nlms|e^{i(\vec{k}-\vec{k'})\vec{x}}|nlms\rangle$ at large $|\vec{k}-\vec{k'}|$ (as required for $\vec{E_d}\sim \text{keV}$)
- \rightarrow For the $A \otimes A$ case, $\sum_{s} \bar{u}_{e}^{s} \gamma^{\mu} \gamma^{5} u_{e}^{s}$ vanishes

Inelastic WIMP-atom scattering

- Electrons contribute incoherently
- Requires computation of electron transition matrix elements

$$\frac{\textit{dR}^{\text{WAS}-\text{in}}}{\textit{dE}_{\textit{d}}} = \frac{3\rho_0\textit{G}^2}{2\pi\,\textit{m}_{\chi}}\,\sum_{\textit{nlm}}\sum_{\textit{n'l'm'}} |\langle \textit{n'l'm'}|e^{\textit{i}(\vec{k}-\vec{k'})\vec{x}}|\textit{nlm}\rangle|^2\,\textit{I}(\textit{v}_{\text{min}}^{\text{WAS}-\text{in}})\,,$$

where

$$V_{\min}^{\text{WAS-in}} = rac{E_d(m_\chi + m_N) - m_N \delta E_B}{m_\chi \sqrt{2m_N(E_d - \delta E_B)}} \,,$$

$$\frac{\textit{dR}^{\text{WAS}-\text{in}}}{\textit{dE}_{\textit{d}}} = \frac{3\rho_0\textit{G}^2}{2\pi\,\textit{m}_\chi}\,\sum_{\textit{nlm}}\sum_{\textit{n'l'm'}}|\langle \textit{n'l'm'}|e^{\textit{i}(\vec{k}-\vec{k'})\vec{x}}|\textit{nlm}\rangle|^2\,\textit{I}(\textit{v}_{\text{min}}^{\text{WAS}-\text{in}})\,,$$

where

$$V_{\min}^{\text{WAS-in}} = \frac{E_d(m_\chi + m_N) - m_N \delta E_B}{m_\chi \sqrt{2m_N(E_d - \delta E_B)}},$$

Compare to the formula for standard WIMPs:

$$rac{dR^0}{dE_d} \simeq rac{3
ho_0 G^2}{2\pi m_\chi} \, I(v_{
m min}^0) \qquad ext{with} \qquad v_{
m min}^0 = rac{m_\chi + m_N}{m_\chi} \sqrt{rac{E_d}{2m_N}}$$

Discussion of inelastic WIMP-atom scattering

• Supression due to smallness of matrix elements $\langle n'l'm'|e^{i(\vec{k}-\vec{k'})\vec{x}}|nlm\rangle$ at large $|\vec{k}-\vec{k'}|$ (as required for $E_d\sim \text{keV}$)

Computation of matrix elements $\langle n'l'm'|e^{iK\vec{x}}|nlm\rangle$

• Expand $e^{i\vec{K}\vec{x}}$ in spherical harmonics and carry out angular integration:

$$\langle n'l'm'|e^{i\vec{K}\vec{x}}|nlm\rangle = 4\pi \int dr \, r^2 R_{nl}(r) \, R_{n'l'}(r) \sum_{L,M} j_L(Kr) \, Y_{LM}(\theta_K, \phi_K)$$

$$\times \frac{(-1)^m}{\sqrt{4\pi}} \sqrt{(2l+1)(2l'+1)(2L+1)} \begin{pmatrix} l & l' & L \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l & l' & L \\ m & m' & M \end{pmatrix}$$

Computation of matrix elements $\langle n'l'm'|e^{i\vec{K}\vec{x}}|nlm\rangle$

• Expand $e^{i\vec{K}\vec{x}}$ in spherical harmonics and carry out angular integration:

$$\langle n'l'm'|e^{j\vec{K}\vec{x}}|nlm\rangle = 4\pi \int dr \, r^2 R_{nl}(r) \, R_{n'l'}(r) \sum_{L,M} j_L(Kr) \, Y_{LM}(\theta_K,\phi_K)$$
$$\times \frac{(-1)^m}{\sqrt{4\pi}} \sqrt{(2l+1)(2l'+1)(2L+1)} \begin{pmatrix} l & l' & L \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l & l' & L \\ m & m' & M \end{pmatrix}$$

Square this and use properties of Wigner-3j symbols

$$\sum_{mm'} \left| \langle n'l'm' | e^{i\vec{K}\vec{x}} | nlm \rangle \right|^2 = (2l+1)(2l'+1) \sum_{L} (2L+1) \left[\begin{pmatrix} l & l' & L \\ 0 & 0 & 0 \end{pmatrix} \right]^2 \\ \times \left[\int dr \, r^2 R_{nl}(r) \, R_{n'l'}(r) j_L(Kr) \right]^2$$

Computation of matrix elements $\langle n'l'm'|e^{i\vec{K}\vec{X}}|nlm\rangle$

• Expand $e^{i\vec{K}\vec{x}}$ in spherical harmonics and carry out angular integration:

$$\langle n'l'm'|e^{i\vec{K}\vec{x}}|nlm\rangle = 4\pi \int dr \, r^2 R_{nl}(r) \, R_{n'l'}(r) \sum_{L,M} j_L(Kr) \, Y_{LM}(\theta_K,\phi_K)$$

$$\times \frac{(-1)^m}{\sqrt{4\pi}} \sqrt{(2l+1)(2l'+1)(2L+1)} \begin{pmatrix} l & l' & L \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l & l' & L \\ m & m' & M \end{pmatrix}$$

Square this and use properties of Wigner-3j symbols

$$\sum_{mm'} \left| \langle \mathbf{n'} l' \mathbf{m'} | e^{i\vec{K}\vec{x}} | \mathbf{n} l \mathbf{m} \rangle \right|^2 = (2l+1)(2l'+1) \sum_{L} (2L+1) \left[\begin{pmatrix} l & l' & L \\ 0 & 0 & 0 \end{pmatrix} \right]^2$$

$$\times \left[\int dr \, r^2 R_{nl}(r) \, R_{n'l'}(r) j_L(Kr) \right]^2$$

Numerically tricky, but OK if done carefully (spherical Bessel transform)

Spherical Bessel transform: Sharafeddin et al., J. Comput. Phys. **100** (1992) 294 Radial wave functions $R_{nl}(r)$ taken from Bunge, Barrientos, Atom. Dat. Nucl. Dat. Tab. **53** (1993) 113