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* Quite generally, residual DM (X) density is due to a departure
from equilibrium

e Usually assumed to be freeze-out where X starts with full 77
density but interactions cannot maintain Boltzmann-suppressed
X equilibrium density

* Freeze-out dominates our thinking about DM candidates,
detection, and collider pheno

There exists an equally motivated, calculable, and testable
mechanism of DM genesis, where interactions too weak
to ever bring X to equilibrium: freeze-in




Basic Mechanism |

* Suppose exists a FIMP, X, only very weakly coupled to the SM
thermal bath via some renormalizable interaction

* Assume negligible initial X abundance

* As universe evolves X particles are produced from collisions
or decays of bath particles, B; , but at rate that is always
suppressed by the small coupling

during a Hubble time at eraT > m, the yield is

Mp;
T

Yir(T) ~ A —

("M is mass of heaviest particle in vertex)




Process is always
IR dominated

* Dominant production occurs at1’ ~ m, since at lower T there is
an exponential suppression resulting from necessity of involving a
particle of massm > T

* Hence for all renormalisable interactions get X yield

Note: For non-renormalizable interactions Fl is dominated by UV contributions (for large-enough
reheat temperature) and so not calculable from IR theory alone, just like gravitinos in usual case




Freeze-in is the ‘opposite’ process to traditional freeze-out:

For increasing interaction strength
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Schematic of relic abundances due to Fl and FO as function of coupling strength.
Connection of Fl and FO yield behaviours to one another is model-dependent: There

exist ~"abundance phase diagrams" of DM yield depending upon strength and type of
DM-thermal bath interaction and DM mass
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Abundance diagram with Qh? contours as function of Yukawa X\ and mx:
[: A2 > \/mx/Mpl; X undergoes conventional FO.

II: mx/mp; < A2 < \/mX/Mpl; X decouples from bath with yield Yx ~ 1.
I1I: mx /mp; > A\ > (mx/Mp;)?; Yx < 1 and FI dominates.

IV: A< (mx/Mp;); DM arises from 1; FO and then decay to X + 5.
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Abundance Calculations I

* First consider case 1 where FIMP X is the DM particle itself

* Suppose coupling AL = AXB;B; with mp, > mp, + mx then
dominant Fl process is via decays B; — B2 X

Boltzmann eqn:
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Can do integrals and using Y =n/S and T~ —HT leads to

Yx

Tmaa: m2 F K T
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Corresponding interaction strength for observed DM density
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(Will soon see that naturally expect such couplings to arise...)




Due to small coupling, automatically get long-lived LOSP states at
LHC (displaced decays, & out-of-time decay of stopped LOSP’s if
charged)
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direct test of production mechanism at LHC!

Such measurements well within capability of LHC, cf. in particular CMS studies

Even if LOSP is neutral so leading decay to X invisible, sub-dominant 3- or 4-body
decays involve charged SM states and allow measurement of lifetime and X mass




Similarly for mx > mg, + mp, (so case 3: FIMP decays to B, LOSP
give DM density)
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Here assumed :

* the Fl contribution from decays of X dominates the
conventional FO abundance of B;

e the decay X — BB, occurs at a time after the FO
of B; so that the density does not get reprocessed
(this naturally so for weak scale masses)




Origin of Small Coupling I

The ‘WIMP miracle’ is that for m/ ~v and M ~ 1

v 1 m’ v
PO N2 \ Mp, M p;

gives the observed value of Qp,/h?

The ‘FIMP miracle’ is that for m ~ v and A ~ v/Mp;
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Suggests that FIMPs occur where small couplings arise at linear
order in the weak scale




Prime candidates:

* moduli of the SUSY-breaking sector giving MSSM soft
terms
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* similarly for the modulini
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For M ~ Mgur (natural value of compactification scale in realistic
string theories) give renormalizable couplings A ~ 10~ *°




Experimental/Observational Consequences I

A rich set of possibilities in all 4 cases. Very briefly, eg,...
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* Late decay of (possibly charged of coloured) MSSM LOSP at
LHC. Usual MSSM dis-favoured regions now allowed

* If 3- or 4-body decays dominate (for kinematic reasons) then
MeV-era BBN-altering decays possible
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* Enhanced indirect detection signals of DM (as LOSP FO
density has to be less than conventional value)

* If 3- or 4-body decays dominate (for kinematic reasons) then
MeV-era BBN-altering decays of X possible




Final comment:

Have assumed throughout that FIMP is close to weak-scale. For
WIMPs this must be so as unitarity limits size of annihilation
cross-section

For FIMPs completely different:

DM with relic abundance Y and mass m leads to temperature fo
matter-rad’'n equality of parametric form 7. ~Ym

Remarkably for Fl this is independent of mass

T..rr ~ N Mp;

Calculable thermal production of
superheavy FIMP DM possible




FIMPs and Freeze-In might rule!




