A new vision of the inert doublet model of dark matter

Laura Lopez Honorez

Universidad Autónoma de Madrid

based on *The inert doublet model of dark matter revisited*. arXiv:1003.3125

in collaboration with C. Yaguna

IDM 2010 - Montpellier

3-body processes can take over 2-body processes

3-body
$$\equiv$$
 real + virtual massive particle
e.g. $WW^* \rightarrow W\bar{f}f'$

2/21

3-body processes can take over 2-body processes

3-body
$$\equiv$$
 real + virtual massive particle e.g. $WW^* \rightarrow W\bar{f}f'$

Well known example : higgs decay $BR(h \to WW^*) \gg BR(h \to \bar{b}b)$ for $m_h \lesssim 2M_W$

3-body processes can take over 2-body processes

3-body
$$\equiv$$
 real + virtual massive particle
e.g. $WW^* \rightarrow W\bar{f}f'$

Well known example : higgs decay $BR(h \to WW^*) \gg BR(h \to \bar{b}b)$ for $m_h \lesssim 2M_W$

3-body processes can enhance DM annihilation/decay:

→ Affect relic abundance, viable parameter space, detection

3-body processes can take over 2-body processes

3-body
$$\equiv$$
 real + virtual massive particle e.g. $WW^* \rightarrow W\bar{f}f'$

Well known example: higgs decay BR $(h \to WW^*) \gg$ BR $(h \to \bar{b}b)$ for $m_h \lesssim 2M_W$

3-body processes can enhance DM annihilation/decay:

- → Affect relic abundance, viable parameter space, detection
 - → Significant effect on: neutralino LSP [Chen & Kamionkowski JHEP '98, Yaguna PRD'10], gravitino LSP [Choi & Yaguna '1003, & all '1007] (see Yaguna talk!!), Higgs DM [Hosotani, Ko & Tanaka PLB'09], singlet scalar DM [Yaguna PRD'10]
- → In this talk: 3bdy annihilation in the Inert doublet model

Minimal DM spirit : SM + extra $SU(2)_L$ doublet see Cirelli et all '05-'09

- DM = neutral member of the extra doublet Higgs: $H_1 \rightsquigarrow h$ and DM: $H_2 \rightsquigarrow H_0, A_0, H^{\pm}$
- stability \rightsquigarrow extra \mathbb{Z}_2 symmetry $SM \rightarrow SM, H_1 \rightarrow H_1$ and $H_2 \rightarrow -H_2$

Minimal DM spirit : SM + extra SU(2)_L doublet see Cirelli et all '05-'09

- DM = neutral member of the extra doublet Higgs: $H_1 \rightsquigarrow h$ and DM: $H_2 \rightsquigarrow H_0, A_0, H^{\pm}$
- stability \rightsquigarrow extra Z_2 symmetry $SM \rightarrow SM, H_1 \rightarrow H_1$ and $H_2 \rightarrow -H_2$

Possible Interactions

- (co)annihilation through *known* $SU(2)_L \times U(1)$ gauge bosons exchange
- quartic coupling λ_i to Higgs H_1

$$\lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$$

Minimal DM spirit : SM + extra SU(2)_L doublet see Cirelli et all '05-'09

- DM = neutral member of the extra doublet Higgs: $H_1 \rightsquigarrow h$ and DM: $H_2 \rightsquigarrow H_0, A_0, H^{\pm}$
- stability \rightsquigarrow extra Z_2 symmetry $SM \rightarrow SM, H_1 \rightarrow H_1$ and $H_2 \rightarrow -H_2$

Possible Interactions

- (co)annihilation through *known* $SU(2)_L \times U(1)$ gauge bosons exchange
- quartic coupling λ_i to Higgs H_1

$$\frac{1}{2} \left(\lambda_{H_0} H_0^2 + \lambda_{A_0} A_0^2 + 2 \lambda_{H_c} H^+ H^- \right) \left(2 v_0 h + h^2 \right)$$

Minimal DM spirit : SM + extra SU(2)_L doublet see Circli et all '05-'09

- DM = neutral member of the extra doublet Higgs: $H_1 \rightsquigarrow h$ and DM: $H_2 \rightsquigarrow H_0, A_0, H^{\pm}$
- stability \rightsquigarrow extra Z_2 symmetry $SM \rightarrow SM, H_1 \rightarrow H_1$ and $H_2 \rightarrow -H_2$

Possible Interactions

- (co)annihilation through *known* $SU(2)_L \times U(1)$ gauge bosons exchange
- quartic coupling λ_i to Higgs H_1

$$\frac{1}{2} \left(\lambda_{H_0} H_0^2 + \lambda_{A_0} A_0^2 + 2 \lambda_{H_c} H^+ H^- \right) \left(2 v_0 h + h^2 \right)$$

Here we take H_0 as the LZ₂P and $\lambda_L \equiv \lambda_{H_0}$

Inert doublet model parameter space

free parameters : $m_{H_0}, m_h, \lambda_L, \Delta m_{A^0}, \Delta m_{H^+}$

• $m_{H_0} \lesssim m_W$: GeV range ($\sim 10 - 80$ GeV):

$$H_0H_0
ightarrow h^*
ightarrow ar{f}f$$
 and $H_0A_0
ightarrow Z^*
ightarrow ar{f}f$

Barbieri PRD06, LLH JCAP06, Gustafsson PRL07, Cao PRD07, Andreas JCAP08,...

• $m_{H_0} \gg m_W$: TeV range ($\gtrsim 530 \text{ GeV}$): $H_0 H_0 \to ZZ, WW, hh$ and coannihil into bosons

H₀ W'(Z)

Cirelli NPB06, Hambye JHEP09

Inert doublet model parameter space

free parameters : $m_{H_0}, m_h, \lambda_L, \Delta m_{A^0}, \Delta m_{H^+}$

• $m_{H_0} \lesssim m_W$: GeV range ($\sim 10 - 80 \text{ GeV}$):

$$H_0H_0 o h^* o ar f f$$
 and $H_0A_0 o Z^* o ar f f$

Barbieri PRD06, LLH JCAP06, Gustafsson PRL07, Cao PRD07, Andreas JCAP08,...

LARGE MASS GAP DUE TO EFFICIENT WW AND ZZ ANNIHILATION

• $m_{H_0} \gg m_W$: TeV range ($\gtrsim 530 \text{ GeV}$): $H_0 H_0 \to ZZ$, WW, hh and coannihil into bosons

H₀ W'(Z)

Cirelli NPB06, Hambye JHEP09

Inert doublet model parameter space

free parameters: $m_{H_0}, m_h, \lambda_L, \Delta m_{A^0}, \Delta m_{H^+}$

• $m_{H_0} \leq m_W$: GeV range ($\sim 10 - 80 \text{ GeV}$):

$$H_0H_0
ightarrow h^*
ightarrow ar{f}f$$
 and $H_0A_0
ightarrow Z^*
ightarrow ar{f}f$

Barbieri PRD06, LLH JCAP06, Gustafsson PRL07, Cao PRD07, Andreas JCAP08,...

→ Significantly affected by 3bdy annihilation :

$$H_0H_0 \to WW^* \to W\bar{f}f'$$

LARGE MASS GAP DUE TO EFFICIENT WW AND ZZ ANNIHILATION

• $m_{H_0} \gg m_W$: TeV range ($\gtrsim 530 \text{ GeV}$): $H_0H_0 \rightarrow ZZ, WW, hh$ and coannihil into bosons

IDM new vision

Analysis for fixed parameters

σv_{2bdy}: higgs mediated,
 → suppressed by Yukawa, m_h

σv_{2bdy}: higgs mediated,
 → suppressed by Yukawa, m_h

• σv_{3bdy} : $\sigma v(WW^*)$ dominantly pure gauge + higgs mediated

→ high multiplicity

→ gauge unsuppressed

- σv_{2bdy} : higgs mediated,
- \sim suppressed by Yukawa, m_h
- σv_{3bdy} : $\sigma v(WW^*)$ dominantly pure gauge + higgs mediated
 - → high multiplicity
 - → gauge unsuppressed

- σv_{2bdy}: higgs mediated,
 → suppressed by Yukawa, m_h
- σv_{3bdy} : σv(WW*) dominantly pure gauge + higgs mediated
 → high multiplicity
 - → gauge unsuppressed

- σv_{2bdy}: higgs mediated,
 → suppressed by Yukawa, m_h
- σv_{3bdy}: σv(WW*) dominantly pure gauge + higgs mediated
 → high multiplicity
- → gauge unsuppressed

 $\rightsquigarrow \sigma v_{2bdy}$ vs σv_{3bdy} depends on m_{H^0} , m_h , λ_L sign and amplitude

 Ω_{dm} is Δm dependent \leftrightarrow allows coannihilations

In the absence of coannihilations:

- roughly $\Omega_{dm} \propto 1/\langle \sigma v \rangle$ with
- $\langle \sigma \mathbf{v} \rangle = \langle \sigma \mathbf{v}(\text{ 2-body}) \rangle + \langle \sigma \mathbf{v}(WW^*) \rangle$
 - We expect

```
\Omega_{dm}(3\text{-body}) \lesssim \Omega_{dm}(2\text{-body})
```

7 / 21

 Ω_{dm} is Δm dependent \leftrightarrow allows coannihilations

In the absence of coannihilations:

- roughly $\Omega_{dm} \propto 1/\langle \sigma v \rangle$ with $\langle \sigma v \rangle = \langle \sigma v (2\text{-body}) \rangle + \langle \sigma v (WW^*) \rangle$
 - We expect $\Omega_{dm}(3\text{-body}) \lesssim \Omega_{dm}(2\text{-body})$

→ confirmed numerically using modified micrOMEGAs

 Ω_{dm} is Δm dependent \leftrightarrow allows coannihilations

In the absence of coannihilations:

• roughly $\Omega_{dm} \propto 1/\langle \sigma v \rangle$ with $\langle \sigma v \rangle = \langle \sigma v (2\text{-body}) \rangle + \langle \sigma v (WW^*) \rangle$

• We expect
$$\Omega_{dm}(3\text{-body}) \lesssim \Omega_{dm}(2\text{-body})$$

→ confirmed numerically using modified micrOMEGAs

Including coannihilations ($\Delta m_{A^0} = 10, \Delta m_{H^+} = 50 \text{ GeV}$):

- coannihilations \equiv 2-bdy pure gauge process $H_0A_0 \rightarrow Z \rightarrow \bar{f}f$ \rightsquigarrow can weaken the 3-bdy domination
- near h resonance H_0 annihilation enhanced \rightsquigarrow coannihilation negligible

 Ω_{dm} is Δm dependent \leftrightarrow allows coannihilations

In the absence of coannihilations:

• roughly $\Omega_{dm} \propto 1/\langle \sigma v \rangle$ with $\langle \sigma v \rangle = \langle \sigma v (2\text{-body}) \rangle + \langle \sigma v (WW^*) \rangle$

• We expect
$$\Omega_{dm}(3\text{-body}) \lesssim \Omega_{dm}(2\text{-body})$$

→ confirmed numerically using modified micrOMEGAs

Including coannihilations ($\Delta m_{A^0} = 10, \Delta m_{H^+} = 50 \text{ GeV}$):

- coannihilations \equiv 2-bdy pure gauge process $H_0A_0 \rightarrow Z \rightarrow \bar{f}f$ \rightsquigarrow can weaken the 3-bdy domination
- near h resonance H_0 annihilation enhanced \rightsquigarrow coannihilation negligible

 Ω_{dm} is Δm dependent \leftrightarrow allows coannihilations

In the absence of coannihilations:

- roughly $\Omega_{dm} \propto 1/\langle \sigma v \rangle$ with $\langle \sigma v \rangle = \langle \sigma v (2\text{-body}) \rangle + \langle \sigma v (WW^*) \rangle$
 - We expect $\Omega_{dm}(3\text{-body}) \lesssim \Omega_{dm}(2\text{-body})$
 - → confirmed numerically using modified micrOMEGAs

Including coannihilations ($\Delta m_{A^0} = 10, \Delta m_{H^+} = 50 \text{ GeV}$):

- coannihilations \equiv 2-bdy pure gauge process $H_0A_0 \rightarrow Z \rightarrow \bar{f}f$ \rightsquigarrow can weaken the 3-bdy domination
- near h resonance H_0 annihilation enhanced \rightsquigarrow coannihilation negligible

7/21

 Ω_{dm} is Δm dependent \leftrightarrow allows coannihilations

In the absence of coannihilations:

• roughly $\Omega_{dm} \propto 1/\langle \sigma v \rangle$ with $\langle \sigma v \rangle = \langle \sigma v (2\text{-body}) \rangle + \langle \sigma v (WW^*) \rangle$

• We expect
$$\Omega_{dm}(3\text{-body}) \leq \Omega_{dm}(2\text{-body})$$

→ confirmed numerically using modified micrOMEGAs

Including coannihilations ($\Delta m_{A^0} = 10, \Delta m_{H^+} = 50 \text{ GeV}$):

- coannihilations \equiv 2-bdy pure gauge process $H_0A_0 \rightarrow Z \rightarrow \bar{f}f$ \rightsquigarrow can weaken the 3-bdy domination
- near h resonance H_0 annihilation enhanced \rightsquigarrow coannihilation negligible

 Ω_{dm} is Δm dependent \leftrightarrow allows coannihilations

In the absence of coannihilations:

- roughly $\Omega_{dm} \propto 1/\langle \sigma v \rangle$ with $\langle \sigma v \rangle = \langle \sigma v (2\text{-body}) \rangle + \langle \sigma v (WW^*) \rangle$
 - We expect $\Omega_{dm}(3\text{-body}) \leq \Omega_{dm}(2\text{-body})$
 - → confirmed numerically using modified micrOMEGAs

Including coannihilations ($\Delta m_{A^0} = 10, \Delta m_{H^+} = 50 \text{ GeV}$):

- coannihilations \equiv 2-bdy pure gauge process $H_0A_0 \rightarrow Z \rightarrow \bar{f}f$ \rightarrow can weaken the 3-bdy domination
- near h resonance H_0 annihilation enhanced \rightsquigarrow coannihilation negligible

 Ω_{dm} is Δm dependent \leftrightarrow allows coannihilations

In the absence of coannihilations:

- roughly $\Omega_{dm} \propto 1/\langle \sigma v \rangle$ with $\langle \sigma v \rangle = \langle \sigma v (2\text{-body}) \rangle + \langle \sigma v (WW^*) \rangle$
 - We expect

$$\Omega_{dm}(3\text{-body}) \lesssim \Omega_{dm}(2\text{-body})$$

Including coannihilations ($\Delta m_{A^0} = 10, \Delta m_{H^+} = 50 \text{ GeV}$):

- coannihilations \equiv 2-bdy pure gauge process $H_0A_0 \rightarrow Z \rightarrow \bar{f}f$ \rightarrow can weaken the 3-bdy domination
- near h resonance H_0 annihilation enhanced \rightsquigarrow coannihilation negligible

 \rightsquigarrow still 3-body final states significantly affect predictions for Ω_{dm}

Parameters for $\Omega_{H_0} = \Omega_{dm}^{WMAP}$

Derive the $\lambda_L - m_{H^0}$ compatible with $\Omega_{dm}^{WMAP} h^2 = 0.11$

Derive the $\lambda_L - m_{H^0}$ compatible with $\Omega_{dm}^{WMAP} h^2 = 0.11$

Going from 2bdy only to 2+3bdy with or without coannihilations:

- correct λ_L is reduced up to $\sim \mathcal{O}(10)$.
- viable m_{H^0} range shrinks
 - 2bdy settled by the onset of W⁺W⁻ annihilations
 - 2+3bdy depends on WW* annihilations

9/21

Derive the $\lambda_L - m_{H^0}$ compatible with $\Omega_{dm}^{WMAP} h^2 = 0.11$

Going from 2bdy only to 2+3bdy with or without coannihilations:

- correct λ_L is reduced up to $\sim \mathcal{O}(10)$.
- viable m_{H^0} range shrinks
 - 2bdy settled by the onset of W⁺W⁻ annihilations
 - 2+3bdy depends on WW* annihilations

Derive the $\lambda_L - m_{H^0}$ compatible with $\Omega_{dm}^{WMAP} h^2 = 0.11$

Going from 2bdy only to 2+3bdy with or without coannihilations:

- correct λ_L is reduced up to $\sim \mathcal{O}(10)$.
- viable m_{H^0} range shrinks
 - 2bdy settled by the onset of W^+W^- annihilations
 - 2+3bdy depends on WW* annihilations

 \rightsquigarrow rather generic feature of the Inert doublet model independently of m_h

→ modify prospects for DM detection

Implications for Direct Detection

Direct detection through Elastic Scattering

Prospects along the viable parameter space :

→ better compatibility with present bounds

4 D > 4 A > 4 B > 4 B > B 9 Q Q

Implications for Direct Detection

Direct detection through Elastic Scattering

Prospects along the viable parameter space :

up to $\sim \mathcal{O}(100)$

→ better compatibility with present bounds

Implications for Direct Detection

Direct detection through Elastic Scattering

Prospects along the viable parameter space :

→ better compatibility with present bounds

More Implications

For Indirect Detection

- new parameter space
- annihilations no more $\bar{b}b$ dominated

$$\rightsquigarrow$$
R($H_0H_0 \rightarrow WW^*$) ~ 1

for m_{H^0} near W threshold

More Implications

For Indirect Detection

- new parameter space
- annihilations no more $\bar{b}b$ dominated

$$\rightsquigarrow$$
 $R(H_0H_0 \rightarrow WW^*) \sim 1$ for m_{H^0} near W threshold

More Implications

For Indirect Detection

- new parameter space
- annihilations no more $\bar{b}b$ dominated

$$\rightsquigarrow$$
 $R(H_0H_0 \rightarrow WW^*) \sim 1$ for m_{H^0} near W threshold

More Implications

For Indirect Detection

- new parameter space
- annihilations no more $\bar{b}b$ dominated

$$\rightsquigarrow$$
 R($H_0H_0 \rightarrow WW^*$) ~ 1 for m_{H^0} near W threshold

Detection at colliders

through extra contributions to $\Gamma(h)$ due to $h o A_0 A_0, H_0 H_0$ [Cao PRD07]

Conclusion

The Inert Doublet is a WIMP with a rich Scalar DM phenomenology

- We have shown that for $m_{H_0} \lesssim m_W$, annihilation into 3 bdy final states (WW^*) MUST be taken into account
- The genuine DM viable parameter space next to W threshold was derived
 - relevant coupling to higgs λ_L is reduced up to \mathcal{O} (10)
 - the viable range in m_{H^0} shrinks by several GeVs
- Prospects for DM detection are modified
 - Direct detection : σ_{H_0-N} decreases by a factor \mathcal{O} (100)
 - DM annihilation is no more $\bar{b}b$ dominated, BR(WW*) ~ 1 for $m_{H_0} \lesssim 60$ GeV

This is the End Thank you for your attention!!

Backup

branchings

Comparing 2-3 body annihilation cross section

3bdy annihilation dominates over 2 bdy on

• $\lambda_L = 10^{-2}$

... a significant range of the parameter space, depend on m_h

Comparing 2-3 body annihilation cross section

3bdy annihilation dominates over 2 bdy on

• $\lambda_L = 10^{-2}$

... a significant range of the parameter space, depend on m_h

Comparing 2-3 body annihilation cross section

3bdy annihilation dominates over 2 bdy on

- $\lambda_L = 10^{-2}$
 - ... a significant range of the parameter space, depend on m_h
- $\lambda_L = 10^{-3}$
 - ... the entire mass range independently of m_h but not representative for $H_0 \equiv DM$

IDM: Mass Ranges

Mass Ranges	main contributions to σ_{eff}	mass splittings	main Refs
$m_{H_0} \ll m_W(\mathcal{O}(GeV))$	$H_0H_0 \to h^* \to \bar{f}f$	$\Delta m_{ij} \gtrsim m_Z - m_{H_0} \sim 90 \text{ GeV}$	Andreas et all '08
$m_{H_0} \lesssim m_W$	$H_0 H_0 \to h^* \to \bar{f} f$ $H_0 A_0 (H^+) \to Z^* (W^*) \to \bar{f} f^{(')}$	$\Delta m_{ij} \gtrsim m_Z - m_{H_0} \gtrsim 7 \text{ GeV}$	Barbieri et all '06 LLH et all '06
$m_{H_0} \gg m_W(\mathcal{O}(TeV))$	$H_0H_0 \to ZZ, WW, hh$ coannihil into bosons	$\Delta m_{ij} \lesssim 17.6 \text{ GeV}$	Hambye et all '09

IDM: Potential - constraints

Full Potential

$$V(H_1, H_2) = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4$$
$$+ \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$$

Dark scalars couplings to Higgs and masses :

$$\begin{array}{l} \frac{1}{2} \left(\lambda_{H_0} H_0^2 + \lambda_{A_0} A_0^2 + 2 \lambda_{H_c} H^+ H^- \right) \left(2 v_0 h + h^2 \right) \\ m_h^2 = 2 \lambda_1 v_0^2 \; , \quad m_i^2 = \mu_2^2 + \lambda_i v_0^2. \end{array}$$

Stability constraint

$$\lambda_{1,2} > 0$$
 , λ_{H_0} , λ_{A_0} , $\lambda_{H_c} > -\sqrt{\lambda_1\lambda_2}$.

• EWPT measurements : $\Delta T \approx \frac{1}{12\pi^2\alpha v^2}(m_{H^+}-m_{A_0})(m_{H^+}-m_{H_0})$

$$\sigma_{\rm eff} = \sum_{ij} \left(\sigma_g^{ij} + \sigma_\lambda^{ij} \right) \propto \frac{1}{m_{H_0}^2}$$
 where $\sigma_\lambda^{ij} = \frac{\Lambda^{ij}}{m_{H_0}^2}$ with $\Lambda^{ij} \propto \lambda * \lambda$ and $\Lambda^{ij} > 0$

Quartic couplings ON : extra Higgs processes and $m_{H_0} \neq m_{A_0} \neq m_{H_c}$

$$\begin{split} \sigma_{\rm eff} &= \sum_{ij} \left(\sigma_g^{ij} \! + \! \sigma_\lambda^{ij} \right) \propto \frac{1}{m_{H_0}^2} \\ \text{where } \sigma_\lambda^{ij} &= \frac{\Lambda^{ij}}{m_{H_0}^2} \text{ with } \Lambda^{ij} \propto \lambda * \lambda \text{ and } \Lambda^{ij} \! > \! 0 \end{split}$$

• $m^* \sim 534 \text{ GeV}$ is minimal to satisfy WMAP

$$\sigma_{\rm eff} = \sum_{ij} \left(\sigma_g^{ij} + \sigma_\lambda^{ij} \right) \propto \frac{1}{m_{H_0}^2}$$
 where $\sigma_\lambda^{ij} = \frac{\Lambda^{ij}}{m_{H_0}^2}$ with $\Lambda^{ij} \propto \lambda * \lambda$ and $\Lambda^{ij} > 0$

- $m^* \sim 534 \text{ GeV}$ is minimal to satisfy WMAP
- for fixed m_{H_0} and $\sigma_{\rm eff}$ λ_i lie on ellipsoid surface

$$\sigma_{\rm eff} = \sum_{ij} \left(\sigma_g^{ij} + \sigma_\lambda^{ij} \right) \propto \frac{1}{m_{H_0}^2}$$
 where $\sigma_\lambda^{ij} = \frac{\Lambda^{ij}}{m_{H_0}^2}$ with $\Lambda^{ij} \propto \lambda * \lambda$ and $\Lambda^{ij} > 0$

- $m^* \sim 534 \text{ GeV}$ is minimal to satisfy WMAP
- for fixed m_{H_0} and σ_{eff} λ_i lie on ellipsoid surface $\leadsto \lambda_i$ are bounded, $\lambda_i^{max} \propto m_{H_0}$ at high mass.

$$\sigma_{\rm eff} = \sum_{ij} \left(\sigma_g^{ij} + \sigma_\lambda^{ij} \right) \propto \frac{1}{m_{H_0}^2}$$
 where $\sigma_\lambda^{ij} = \frac{\Lambda^{ij}}{m_{H_0}^2}$ with $\Lambda^{ij} \propto \lambda * \lambda$ and $\Lambda^{ij} > 0$

- $m^* \sim 534 \text{ GeV}$ is minimal to satisfy WMAP
- for fixed m_{H_0} and $\sigma_{\rm eff}$ λ_i lie on ellipsoid surface $\leadsto \lambda_i$ are bounded, $\lambda_i^{max} \propto m_{H_0}$ at high mass.
- mass splittings are also bounded as $m_i m_j \propto (\lambda_i \lambda_j)/m_{H_0}$

3bdy effect on DM?

3-body processes can enhance DM annihilation :

- supersymmetric dark matter:
 - neutralino LSP: Chen & Kamionkowski JHEP '98 study $\sigma v_{\nu \to 0}$ and impact on ν detection from annihilation in the Earth bellow WW and $\bar{t}t$ mass threshold
 - Yaguna PRD'10 demonstrate up to 10% effect on Ωh_{χ}^2 for bino-like χ including $\bar{t}t*$ (usually 2-bdy $\bar{b}b$ dom)
 - gravitino LSP: Choi & Yaguna '1003 W^*l and $Z^*\nu$ give significant (up to 90%) to \tilde{G} decay (usually 2-bdy $\gamma\nu$ dom) Choi, Restrepo, Yaguna & Zapata '1007 gamma+antimatter signal [see Yaguna talk!!]
- scalar DM
 - Higgs DM : Hosotani, Ko & Tanaka PLB'09 (gauge-Higgs unification) $\Omega_{DM} \leadsto m_{DM} = 75 \text{ GeV} \text{ (2bdy only)} \Rightarrow m_{DM} = 70 \text{ GeV} \text{ (including 3bdy)}$
 - singlet scalar DM : Yaguna PRD'10, $SS \to h \to WW^*$ enhance $\sigma v_{v \to 0}$ and reduce Ω_{DM} independently of S-higgs coupling

This is the End

