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Outline

Axions and dark matter

The Axion Dark-Matter eXperiment (ADMX)
Original (transistor amplifier) experiment (completed),
sensitive to plausible D.M. masses & couplings

“Phase I” upgrade (SQUID amplifier w/o dilution refrigerator) experiment
(completed), incorporate SQUID amplifiers

“Phase II” (SQUID amplifier with dilution refrigerator) experiment
(under construction), incorporate dilution refrigerator
The “definitive” experiment

The Kyoto Experiment (CARRACK), Rydberg-atom-based photon
counting (in development), potential to evade Standard Quantum
Limit to amplifier noise.

Summary and prospects



RF cavity experiments address the question: Does our
local dark matter halo consist of Peccei-Quinn axions?

We know neither what the “dark energy” or the “dark matter” is

A particle relic from the Big Bang is strongly implied for DM
WIMPs ?
Axions ?

Other
Dark energy nonluminous
ggoe/ntlty unknown) Dark matter components
° (identity unknown)
23%

Luminous matter

Science (20 June 2003)



Peccei-Quinn axions: constrained mass and coupling

+ The Axion is a light pseudoscalar resulting from the
Peccei-Quinn mechanism to enforce strong-CP conservation

- fa, the SSB scale of PQ-symmetry, is the one important

parameter in the theory
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RF cavity experiments exploit the axion’s 2-photon coupling

The axion couples (very weakly, indeed) to normal particles.

But it happens that the axion 2y coupling has relatively little axion-model
dependence

Axions constituting our local galactic halo
would have huge number density ~10'% cm3




Pierre Sikivie’s RF-cavity idea (1983):

Axion and electromagnetic fields exchange energy

The axion-photon coupling...

Y
_a s,

...Is a source term in Maxwell’s Equations
J(E’ 12)

P —E-(VxB)=gayc'z(E-B)

So imposing a strong external magnetic field B
transfers axion field energy into cavity electromagnetic
energy.
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Some experimental details of the RF-cavity technique

Primakoff Conversion

+ The conversion is resonant, i.e. the frequency
Tn
must equal the mass + K. E.

- The total system noise temperature Tg =T + Ty
is the critical factor

The search speed is
quadratic in 1/Ts

Signal Scaling Laws
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ADMX: Axion Dark-Matter eXperiment

U of Washington, LLNL, University of Florida, UC Berkeley,
National Radio Astronomy Observatory, Sheffield University
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ADMX hardware
high-Q cavity




ADMX axion receiver
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Converted microwave photons are detected by
the world’s quietest radio receiver
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Sample data and candidates
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Brief outline of analysis — 100 MHz of data

Data, with Theoretical Curve + Each frequency appears in
(Gaussian noise through receiver and analysis) >45 subspectra
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Results from the decade of the original ADMX
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These are interesting regimes of particle and astrophysics:
probe realistic DM axion couplings and halo densities




Summary of original (transistor amplifier)
ADMX results

» Scanned 461 <f, <810 MHz in ~ 10 years
— Net scan rate < 0.5 MHz/day (at optimal f,)

- But, the lowest (and attractive) decade of “standard”
axion mass spans 300 < f, <3000 MHz

- ...and the “DFSZ” models (weak, but plausible) are
another factor of 7 lower in conversion power

Scanning the attractive axion-mass decade and models
In a reasonable amount of time requires a speed-up




A slight digression on Microwave amplifiers

Noise Temperature
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HFET amplifiers
(Heterojunction Field-Effect Transistor)

— A.k.a. HEMT™ (High Electron
Mobility Transistor)

— Workhorse of radio astronomy,
military communications, etc.

- Besttodate Ty 21K

But the quantum limit Tq ~ hv/k at
500 MHz is only ~ 25 mK!

A quantum-limited amplifier would both
give us definitive sensitivity, and
dramatically speed up the search!




Phase | & Il Upgrade path:
Quantum-limited SQUID-based amplification
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ADMX “Phase I” and “Phase II” upgrades

The ADMX SQUID upgrade proceeds in two phases:

Phase I: Retrofit SQUID ampilifiers first, but stay at 2K
physical temperature (data-taking completed)

Phase IlI: Once SQUIDs work in situ, retrofit with the
dilution refrigerator for 100 mK physical temperature

(x20 lower temperature) (under construction)



Phase | Upgrade construction finished late 2007
and then entered commissioning, operated into 2010
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amplifier ‘
Field compensation
magnet for SQUIDs 9

All new
experiment
package




|

The SQUIDs sit well above the cavity W \
|

From outwards-in:

Bucking caoill

Iron shield.

Cryoperm (mumetal) shields.
Superconducting shields.
SQUID amplifier package.
SQUIDs.




Phase | commissioning: SQUID amplifier

| SQUID FFT001 calibration (about 100 yoctowatts)
/ January 25, 2008:
;.f: Temperature ~ 4K
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: | |
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What would a signal look like in ADMX?
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Phase | operations: First-year science data
Axion Mass (ueV)
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FIG. 5: Axion-photon coupling excluded at the 90% con-
fidence level assuming a local dark matter density of 0.45
GeV/cm® for two dark matter distribution models. The
shaded region corresponds to the range of the axion photon
coupling models discussed in [23].



Phase | operations include exotics “Chameleons” &

hidden-sector photons

Chameleons

Scalars/pseudoscalars that mix with
photons, and are trapped by cavity
walls. Arise in some dark energy
theories. Detectable by slow decay

back into photons in cavity

<&

>

FFT

Hidden-sector photons

Vector bosons with photon quantum
numbers and very weak interactions.
Detectable by reconverting HSPs back
into photons in ADMX cavity
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Chameleons
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Hidden Sector Photons

ADMX
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Phase Il ADMX: Construction starting now. Adds
dilution-refrigerator cooling

l/
Sn-1987a

100

Axion models

“Power sensitivity” (arb. units)
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Phase Il will scan the lower-mass decade at or below
DFSZ sensitivity at fractional dark-matter halo
density, then continue upward in frequency
This is the “definitive” search for standard axions




New thread: Non-classical photon states

Single microwave-photon detection: a RF-photon phototube

For any detector of electromagnetic radiation, there’s a
number-of-quanta, phase-of-radiation uncertainty relation:

An-A¢ =1

Evading the “Standard Quantum Limit”:

If you don’t measure the electromagnetic phase ¢,

you can measure the number of quanta n to arbitrarily high precision.
(We do this all the time in the optical with photomultiplier tubes.)

This is a “phototube” for microwave photons.



RF Phototube: Rydberg-atom microwave-photon detection

Rydberg atoms are alkali metals in high states of excitation

Small energy difference between n and n+1 levels
AW, ~ 1/n3
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Preparing the Rydberg state

Laser diodes make this semi-practical
(n+2)p

<«  Jaser diode (ext cavity)

“«nrv laser diode 776nm

SPa/o

<«  Jaser diode 780nm

5840 ground state



Principle of Rydberg-atom-based axion detector
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CARRACK: Cosmic Axion Research with Rydberg
Atoms in resonant Cavities in Kyoto
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lonization spectra: detection of single black-body photons

-1 Tada et al., Phys.Lett.A

Upper level np, ),

A S T=266mK

black body -

Lower level ns,,
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CARRACK sensitivity
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Various axion limits: Why RF cavities?
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Conclusions

The original ADMX achieved sensitivity to plausible PQ DM axions
using transistor HFET amplifiers.

The ADMX Phase | SQUID Upgrade :
Science: 1st year “medium-resolution” results published, “high-resolution”
analysis in progress; exotics (Chameleons & hidden-sector photons).

ADMX Phase Il SQUID & Dilution Refrigerator Upgrade
Construction takes 3 years with commissioning into year 4.
Simultaneous higher-frequency R&D on amplifiers & resonant structures

This final ADMX phase or CARRACK in operations will be sensitive to even the
more pessimistically-coupled axions at fractional halo density

Quite starkly: These experiments have the sensitivity and mass reach to
either detect or rule out PQ DM axions at high confidence.



Back-up slides



Phase | operations:
Automated bucking-coil field control

Magnet Current

200 L | | | | | | | Main Magl;netICurrlent I
Bucking Coil Current

150 -

100 -

Current (Amps)

50 -

0 l 1 ] 1 ] L | L | L 1 L 1 L 1 L ] 1
12:.00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00

Field Measurements

SQUID Axial -
Shield Axial

| il ||||||||||l|||m hIhHhIIIthIIhIhINIIH

i

_120 | L | L | L 1 L L 1 L 1 L | L
12:.00 14:00 16:00 18:00 20:00 22:00 OO OO 02.00 04:00 06:00 08:00 10:00

Time

Field (G)

|




Phase | operations: Tuning during smooth operations

ADMX State Data for B5-/84-/2008
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Smooth operations gives ~1 MHz/day net scan rate




Medium-Resolution Phase | Limit

Axion Mass (ueV)
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Brief timeline of ADMX Phase | upgrade
(SQUIDS w/o dilution refrigerator)
+ Original ADMX scanned 460 — 812 MHz (1.86 — 3.26 ueV) @ KSVZ
- Down-time for Phase | Upgrade (SQUIDS) (2004-2008)
* First cool-down of Phase | Upgrade (fall 2007)
« Sept 2008-Dec 2008 Operations
+ Jan 2009 - Feb 2009 Access to fix thermal issues
« March 2009 — onwards Major Operations:
Milestones achieved:
(1) Heat load at design value
(2) Magnetic field bucking system operational
(3) SQUID receiver chain operational
(4) Production data-taking

* PRL published on first-year operations

{ Spring 2010: Phase | stops for Phase Il construction

UChicago-07may08 LJR 41



Phase | operations: Hi-Resolution Science data
(c.f., poster Jeff Hoskins and talk Leanne Duffy)

HiRes 256-Bin SNR December 2, 2008 through July 28, 2009
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Analysis is in progress:
High resolution channel potentially gives greatly increased sensitivity




Phase lI: Data from test move (c.f., poster Kyle Tracy
& Jesse Heilman

20 minutes at 20-30 mph on a bad road

Total Horizontal Acceleration From Ultrashock Logger | idealslowultra Total Horizontal Acceleration From Ultrashock Logger Efficiency | Effidealslowultra
Entries 518 Entries 4314
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Data was binned by the maximum acceleration Acceleration vs. percentage of counts above that
logged each second acceleration

Scheduling cryostat move for spring 2010




Early Phase Il challenge: Move cryostat to U of Washington
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Magnet coil suspension is delicate and welded shut




