Microwave Cavity Searches for Axions

IDM 2010 Montpellier, France July 26, 2010

Leslie J Rosenberg University of Washington

Outline

Axions and dark matter

The Axion Dark-Matter eXperiment (ADMX) Original (transistor amplifier) experiment (completed), sensitive to plausible D.M. masses & couplings

"Phase I" upgrade (SQUID amplifier w/o dilution refrigerator) experiment (completed), incorporate SQUID amplifiers

"Phase II" (SQUID amplifier with dilution refrigerator) experiment (under construction), incorporate dilution refrigerator The "definitive" experiment

The Kyoto Experiment (CARRACK), Rydberg-atom-based photon counting (in development), potential to evade Standard Quantum Limit to amplifier noise.

Summary and prospects

RF cavity experiments address the question: Does our local dark matter halo consist of Peccei-Quinn axions?

We know neither what the "dark energy" or the "dark matter" is

A particle relic from the Big Bang is strongly implied for DM WIMPs ? Axions ?

Science (20 June 2003)

Peccei-Quinn axions: constrained mass and coupling

- The Axion is a light pseudoscalar resulting from the Peccei-Quinn mechanism to enforce strong-CP conservation
- f_a, the SSB scale of PQ-symmetry, is the one important parameter in the theory

RF cavity experiments exploit the axion's 2-photon coupling

The axion couples (very weakly, indeed) to normal particles.

But it happens that the axion 2γ coupling has relatively little axion-model dependence

Axions constituting our local galactic halo would have huge number density ~10¹⁴ cm⁻³

Pierre Sikivie's RF-cavity idea (1983): Axion and electromagnetic fields exchange energy

The axion-photon coupling...

... is a source term in Maxwell's Equations

$$\frac{\partial \left(\mathbf{E}^2 / 2\right)}{\partial t} - \mathbf{E} \cdot \left(\nabla \times \mathbf{B}\right) = g_{a\gamma} \dot{a} \left(\mathbf{E} \cdot \mathbf{B}\right)$$

So imposing a strong external magnetic field B transfers axion field energy into cavity electromagnetic energy.

Some experimental details of the RF-cavity technique

ADMX: Axion Dark-Matter eXperiment

U of Washington, LLNL, University of Florida, UC Berkeley, National Radio Astronomy Observatory, Sheffield University

Magnet cryostat

ADMX hardware

high-Q cavity

experiment insert

ADMX axion receiver

Converted microwave photons are detected by the world's quietest radio receiver

Systematics-limited for signals of 10⁻²⁶ W ~10⁻³ of "DFSZ" axion power (1/100 yoctoWatt).

Sample data and candidates

Brief outline of analysis – 100 MHz of data

- Each frequency appears in >45 subspectra
- Weighted and co-added to produce spectrum
- 800,000 bins (125 Hz)/100 MHz
- \rightarrow 6535 candidates > 2.25 $\sqrt{6 \sigma}$ (95% C.L.)
- → Rescan all to same sensitivity
- → 23 candidates
 - (Net 90% C.L.)
- \rightarrow Each examined: radio peaks

Results from the decade of the original ADMX

These are interesting regimes of particle and astrophysics: probe realistic DM axion couplings and halo densities

Summary of original (transistor amplifier) ADMX results

- Scanned 461 < f_0 < 810 MHz in ~ 10 years
 - Net scan rate ≤ 0.5 MHz/day (at optimal f_0)
- But, the lowest (and attractive) decade of "standard" axion mass spans $300 < f_0 < 3000$ MHz
- ...and the "DFSZ" models (weak, but plausible) are another factor of 7 lower in conversion power

Scanning the attractive axion-mass decade and models In a reasonable amount of time requires a speed-up

A slight digression on Microwave amplifiers

- A.k.a. HEMT[™] (High Electron Mobility Transistor)
- Workhorse of radio astronomy, military communications, etc.
- Best to date $T_N \gtrsim 1 \text{ K}$

But the quantum limit $T_Q \sim hv/k$ at 500 MHz is only ~ 25 mK!

A quantum-limited amplifier would both give us definitive sensitivity, *and* dramatically speed up the search!

Phase I & II Upgrade path: Quantum-limited SQUID-based amplification

- SQUIDs have been measured with T_N ~50 mK
- Near quantum– limited noise
- This provides an enormous increase in ADMX sensitivity

The ADMX SQUID upgrade proceeds in two phases:

Phase I: Retrofit SQUID amplifiers first, but stay at 2K physical temperature (data-taking completed)

Phase II: Once SQUIDs work in situ, retrofit with the dilution refrigerator for 100 mK physical temperature (x20 lower temperature) (under construction)

Phase I Upgrade construction finished late 2007 and then entered commissioning, operated into 2010

The SQUIDs sit well above the cavity

From outwards-in:

Bucking coil Iron shield. Cryoperm (mumetal) shields. Superconducting shields. SQUID amplifier package. SQUIDs.

Phase I commissioning: SQUID amplifier

What would a signal look like in ADMX?

Phase I operations: First-year science data

FIG. 5: Axion-photon coupling excluded at the 90% confidence level assuming a local dark matter density of 0.45 GeV/cm³ for two dark matter distribution models. The shaded region corresponds to the range of the axion photon coupling models discussed in [23].

Phase I operations include exotics "Chameleons"& hidden-sector photons

Chameleons

Scalars/pseudoscalars that mix with photons, and are trapped by cavity walls. Arise in some dark energy theories. Detectable by slow decay back into photons in cavity

Hidden-sector photons

Vector bosons with photon quantum numbers and very weak interactions. Detectable by reconverting HSPs back into photons in ADMX cavity

Chameleons

Hidden Sector Photons

ADMX PRELIMINARY

Phase II ADMX: Construction starting now. Adds dilution-refrigerator cooling

Phase II will scan the lower-mass decade at or below DFSZ sensitivity at fractional dark-matter halo density, then continue upward in frequency This is the "definitive" search for standard axions

New thread: Non-classical photon states

Single microwave-photon detection: a RF-photon phototube

For any detector of electromagnetic radiation, there's a number-of-quanta, phase-of-radiation uncertainty relation:

 $\Delta n \cdot \Delta \phi \ge 1$

Evading the "Standard Quantum Limit": If you don't measure the electromagnetic phase ϕ , you can measure the number of quanta *n* to arbitrarily high precision. (We do this all the time in the optical with photomultiplier tubes.)

This is a "phototube" for microwave photons.

RF Phototube: Rydberg-atom microwave-photon detection

Rydberg atoms are alkali metals in high states of excitation

Small energy difference between n and n+1 levels $\Delta W_n \sim 1/n^3$ $\Delta W_{100} \approx 7 \text{ GHz}$

Large E1 transition between 1.0 10⁵ n and n+1 levels 17d 118d 119d 8.0 10⁴ Counts [counts / sec] $\langle n+1 | er | n \rangle \sim n^2$, $\Gamma_n \sim n^4$ $\Gamma_{100} \approx 3 \times 10^4$ /sec 6.0 10⁴ 4.0 10⁴ 119s 120s Long life time 117 manifold 116 manifold $2.0 \, 10^4$ $\tau_n \sim n^3$ 120p 119p 0.0 10⁰ $\tau_{100} \approx 1$ msec 6000 2000 4000 -2000-4000 0

Frequency [MHz]

Preparing the Rydberg state

Principle of Rydberg-atom-based axion detector

CARRACK: Cosmic Axion Research with Rydberg Atoms in resonant Cavities in Kyoto

Ionization spectra: detection of single black-body photons

Tada et al., Phys.Lett.A

CARRACK sensitivity

Conclusions

The original ADMX achieved sensitivity to plausible PQ DM axions using transistor HFET amplifiers.

The ADMX Phase I SQUID Upgrade :

Science: 1st year "medium-resolution" results published, "high-resolution" analysis in progress; exotics (Chameleons & hidden-sector photons).

ADMX Phase II SQUID & Dilution Refrigerator Upgrade Construction takes 3 years with commissioning into year 4. Simultaneous higher-frequency R&D on amplifiers & resonant structures

This final ADMX phase or CARRACK in operations will be sensitive to even the more pessimistically-coupled axions at fractional halo density

Quite starkly: These experiments have the sensitivity and mass reach to either detect or rule out PQ DM axions at high confidence.

Back-up slides

Phase I operations: Automated bucking-coil field control

Phase I operations: Tuning during smooth operations

Smooth operations gives ~1 MHz/day net scan rate

Medium-Resolution Phase I Limit

Brief timeline of ADMX Phase I upgrade (SQUIDS w/o dilution refrigerator)

- Original ADMX scanned 460 812 MHz (1.86 3.26 μ eV) @ KSVZ
- Down-time for Phase I Upgrade (SQUIDS) (2004-2008)
- First cool-down of Phase I Upgrade (fall 2007)
- Sept 2008-Dec 2008 Operations
- Jan 2009 Feb 2009 Access to fix thermal issues
- March 2009 onwards Major Operations: Milestones achieved:
 - (1) Heat load at design value
 - (2) Magnetic field bucking system operational
 - (3) SQUID receiver chain operational
 - (4) Production data-taking
- PRL published on first-year operations
- Spring 2010: Phase I stops for Phase II construction

Phase I operations: Hi-Resolution Science data (c.f., poster Jeff Hoskins and talk Leanne Duffy)

Analysis is in progress:

High resolution channel potentially gives greatly increased sensitivity

Phase II: Data from test move (c.f., poster Kyle Tracy & Jesse Heilman

20 minutes at 20-30 mph on a bad road

Scheduling cryostat move for spring 2010

Early Phase II challenge: Move cryostat to U of Washington

Magnet coil suspension is delicate and welded shut