Searches for DM signals from the Galactic Center region with HESS

Daniil Nekrassov on behalf of the H.E.S.S. collaboration

IDM 2010 Montpellier 29.07.10

GC and search for DM

- GC for DM search in TeV y-rays because:
 - DM density at maximum, least distance
 - Except for subhalos, but here no real prediction possible
 - TeV γ-rays with no foreground, no absorption
 - e.g. galaxy clusters suffer from EBL absorption
 - Connection to measurements of multiwavelength, e[±], p
 - Only photons (+neutrinos) from dwarf galaxies
- Drawbacks
 - Astrophysical background processes
 - DM density profile unknown

H.E.S.S. experiment

- Array of 4 Imaging Cherenkov Telescopes
- Energy range 0.1 100 TeV (!)
- Angular resolution ~ 0.1° (!)
- Energy resolution ~ 15 20%
- 1 % crab flux (1*10⁻¹³ cm⁻² s⁻¹ TeV⁻¹ at 1 TeV) in 25h (!)

TeV view of the GC region

- Central point source detected in 2004 (Whipple, Cangoroo, HESS, Magic)
 - Origin still not fully established (SMBH, PWN)
- Other sources detected only by HESS:
 - G0.9 + 0.1 (PWN)
 - HESS J 1745 303 (UnID)
 - Diffuse emission (CR MCs)
- All sources with astrophysical explanations

HESS Results and DM interpretation GC point source

HESS J1745 - 295 of main interest for DM search:

- HESS J1745 295 of main interest for DM search:
 - HESS paper on DM interpretation (PRL 97, 221102, 2006):
 - Only weak limits possible, spectrum is a smooth power law

- HESS J1745 295 of main interest for DM search:
 - Update paper on the source spectrum (A&A 503, 817-825 (2009)):
 - Power law with exp. Cut-off, typical for particle accelerators -->
 Statistics improved, DM even more unlikely

- HESS J1745 295 of main interest for DM search:
 - Update paper on the source location (MNRAS 402 (2010) 1877-1882):
 - Both SMBH SgrA* and PWN 359.95-0.04 are compatible with source position, both can reproduce the spectrum

- Most likely γ-ray source of astrophysical origin
- Data only constraining for special cases (cusped profiles, spectral features)
 - Ripken et al. (poster contribution at ICRC '09)

- GC point source data not very promising if stand-alone, sensitive to the DM profile shape
- Combination of data: GC point source, GC diffuse emission, multiwavelength, e[±], p measurements

HESS Results and DM interpretation Triggered publications

- GC point source data not very promising if stand-alone, sensitive to the DM profile shape
- Combination of data: GC point source, GC diffuse emission, multiwavelength, e[±], p measurements:
 - Meade et al. (astro-ph/0905.0480): Comparison with Pamela, ATIC,
 Fermi

HESS Results and DM interpretation Triggered publications

- GC point source data not very promising if stand-alone, sensitive to the DM profile shape
- Combination of data: GC point source, GC diffuse emission, multiwavelength, e[±], p measurements:
 - Crocker et al.(PR D 81, 063516 (2010)): Constraints through radiation by cooling electrons in the GC area

- GC y-ray point source
 - Located where density is the highest
 - Strong source with astrophysical origin
 - Does not allow for tight limits (with exceptions)
- GC diffuse emission
 - Competative limits due to lower flux, relatively high DM density
- Some interesting results if used in a multimessenger context (ATIC/Pamela anomalies)

Current activities

- More than 100 hrs spent on GC region
 - Unlikely that existing results vastly improve
- But: Only regions with γ-ray sources used
 - Remaining field of view seems empty!
 - Constraints from regions free of astrophysical background?

Current activities

- More than 100 hrs spent on GC region
 - Unlikely that existing results vastly improve
- But: Only regions with y-ray sources used
 - Remaining field of view seems empty!
 - Constraints from regions free of astrophysical background?
 - Results should improve upon limits from GC diffuse emission
- Need analysis of close-by regions!

Current activities Background issues

- Extraction of a background subtracted spectrum required
 - Empty field of view contains hadronic background
- Background subtraction for large source regions tricky
- Two ways (need background with same detector acceptance):
 - Background estimation from field of view
 - Background estimation from dedicated "off"-observations

Current activities Background issues

- Background from field-of-view:
 - Use regions with the same distance to the observation position
 - Need lower DM density for background regions, larger distance to the GC
 - Observation positions mostly close to the GC

Current activities Background issues

- Background from field-of-view:
 - Use regions with the same distance to the observation position
 - Need lower DM density for background regions, larger distance to the GC
 - Observation positions mostly close to the GC
- Background from "off"-observations
 - Perform "on" and "off" observations, match zenith angles
 - Equal number of "on" and "off" observations

Summary

- TeV observations of the GC region opened a new way to detect DM/constrain DM parameter space
 - Closest region of high DM density
- All detected sources of astrophysical origin
 - Data yields some interesting results, in particular in combination with other measurements
- On-going activities to obtain results from regions free of y-ray sources
- In the future: HESS II, CTA(!)