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Indirect Evidence of Dark Matter?
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O. Adriani et.al.[PAMELA Collaboration], Nature 458, 607 (2009) A.A.Abdo et.al.[The Fermi LAT Collaboration], Phys.Rev.Lett.102,181101 (2009)

Measurements of positron fraction in the 1-100 GeV range by PAMELA (left)
and e*e- flux from 20 GeV - 1 TeV by Fermi (right) show excesses inconsistent
with conventional astrophysical background expectations, fit well to leptophilic
dark matter annihilation with boosted cross sections in the galaxy.

Will have accompanying signals in the form of energetic gamma rays.
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« What kind of gamma rays?

Final State Radiation

(dominates at high energies, model-independent and
independent of astrophysical uncertainties)

 Look at:

Dwarf galaxies
(negligible background, clear direction)

e Use:

Atmospheric Cherenkov Telescopes
(large effective areas of observation)
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Gamma Rays from Final State Radiation (FSR)
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(Birkedal, Matchev, Perelstein, Spray, 2005)

 guaranteed in leptophilic (or any charged) annihilation channels

« dominant close to dark matter mass, has a sharp “edge” feature
at this cutoff for 2-body final states

 spectrum independent of astrophysical uncertainties

* independent of details of the particle physics model; model-
iIndependent predictions can be made

(need to add on additional FSR from subsequent decay of products)
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Dwarf Galaxies

» dark matter dominated

o
* low background: no b Neio
detected gas, minimal dust, -~ ¢ &
no magnetic fields, little or P o

no recent star formation
activity

* lie away from galactic
center

» velocity distribution lower
than in Milky Way halo:
possible Sommerfeld
enhancement by an order of
magnitude !
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Belokurov et al, (2006)
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Dwarf Galaxies: Promising Candidates
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Ursa Minor
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A direction close to
Ps galactic center,
Draco: D 2 VY o being tidally
Observed several T gl disrupted by the
times Milky Way

many new dwarfs expected to be discovered in the future.
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FSR flux
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Phys. Rev. D 80, 023506 (2009) _
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Atmospheric Cherenkov Telescopes (ACTs)

« Signals from dwarf galaxies expected to be too weak for Fermi
LAT to detect: need larger collection areas

= ACTs! (typical effective areas ~1074 times larger than Fermi)

» typical energy threshold: 200 GeV
 energy resolution: 10-30%

* major disadvantage: large cosmic ray backgrounds (hadronic
and leptonic)

» several ACTs currently operational: MAGIC, HESS, VERITAS,
CANGAROO

» future telescopes being planned: AGIS, CTA. Will provide an
order of magnitude improvement over current instruments.
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Leptophilic dark matter “models”, favored by current PAMELA, Fermi data.
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B

ackgrounds

« Cosmic ray background:

misidentifying hadronic and

leptonic events in the

atmosphere as gamma ray

signals

i . » Can “subtract” this

O = N W Hh 01 O N © ©

Background 2mu 4e

ame background away up to

Background and signals fluxes for Segue 1 statistical fluctuations (ON

(in 10-2cm-2s1)

region - OFF region)

DM backgrounds from inside the galaxy (FSR and invserse
Compton scattering) are negligible because of a narrow region of
focus and the direction of dwarfs (away from galactic center).
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Previous Observations and Upper Bounds

* No significant signals observed

 Large uncertainty in dark matter distribution in all dwarfs, predictions
consistent with experimental bounds up to these uncertainties
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(Left to right: 2mu, 4e, 4mu predictions for each dwarf )
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Detection Prospects
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Integrated flux above 200 GeV. Dot-dashed, solid, and dashed
lines: 3o sensitivities of VERITAS, MAGIC, and CTA in 50 hours.
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Model Identification

* Once a positive signal is detected, what information can be
extracted from it? Can the underlying model and parameters be
identified?

« Simulate observation (including background subtraction) and fits to
theory for different scenarios:
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Model Identification
Benchmark case: Observation of Segue 1
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Threshold energy: 500 GeV

Top plot: Frequency with which
model used to generate data (x-
axis) was best fit to the three
channels (color coded).

Results for current instrument
parameters on left, future
parameters on right.

Bottom: best fit masses, in GeV

Overall success rate:
/5% for current telescope
parameters,

86% for future ones
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Threshold 200 GeV
instead of 500 GeV.

More statistics, but
background also rises
faster than signal at
lower energies.

Success rates:
79% (current)
86% (future)

No significant improvement.
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Case 3: Improved Hadron Rejection
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i 1:: (i 10°
Have been using ¢, 4=1.
Try €,,4=0.01. Fit quality
significantly better, slight
iImprovement in model
identification.
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Case 4: Lighter dark matter
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Use m, = 1 TeV instead
of m, = 3 TeV.

Signal has m_
dependence, but will
have fewer energy bins.

Fits favor 4mu channel

when annihilation is into
4 leptons.
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Case 5: 30 or 50 detection
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Left: 30 detection
Right: 5o detection

Success rates now lower:
46% for 30, 53% for 50

Success rate for
discriminating between 2
and 4 body channels:

63% and 75% respectively.
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Summary

» Prospects of indirect detection of dark matter via FSR from dwarf
galaxies using current and near-future ACTs are excellent.

 Large uncertainty in distribution of dark matter in dwarf galaxies.
« Segue 1 is an extremely promising candidate.

* Fits to observed signals can identify the dark matter mass to ~10-
20% accuracy, and correctly identify the annihiation channel with
~60-80% probability.

*Success rate for model identification is robust with respect to

changes in energy threshold, WIMP mass, energy resolution, and
hadron rejection capabillities.
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“When is science going to explain the dark matter Q u eStI O n S

[ find in my belly button every morning?”
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