Effects of Residue Background Events in Direct Detection Experiments on Determining Properties of Halo Dark Matter

Chung-Lin Shan

Department of Physics, National Cheng Kung University

IDM 2010, Montpellier, France July 27, 2010

based on arXiv:1003.5277 [hep-ph], JCAP 1006, 029

Model-independent data analyses

Motivation Reconstruction of the WIMP velocity distribution Determination of the WIMP mass

Effects of residue background events

Measured recoil spectrum On the determination of the WIMP mass On the reconstruction of the WIMP velocity distribution

Model-independent data analyses

Motivation

• Differential event rate for elastic WIMP-nucleus scattering

$$\frac{dR}{dQ} = \mathcal{A}F^{2}(Q)\int_{v_{\min}}^{v_{\max}}\left[\frac{f_{1}(v)}{v}\right]dv$$

Here

$$v_{\min} = \alpha \sqrt{Q}$$

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy Q in the detector.

$$\mathcal{A} \equiv \frac{\rho_0 \sigma_0}{2m_{\chi}m_{\rm r,N}^2} \qquad \qquad \alpha \equiv \sqrt{\frac{m_{\rm N}}{2m_{\rm r,N}^2}} \qquad \qquad m_{\rm r,N} = \frac{m_{\chi}m_{\rm N}}{m_{\chi} + m_{\rm N}}$$

 ρ_0 : WIMP density near the Earth σ_0 : total cross section ignoring the form factor suppression F(Q): elastic nuclear form factor $f_1(v)$: one-dimensional velocity distribution of halo WIMPs

Motivation

• Differential event rate for elastic WIMP-nucleus scattering

$$\frac{dR}{dQ} = \mathcal{A}F^2(Q) \int_{v_{\min}}^{v_{\max}} \left[\frac{f_1(v)}{v}\right] dv$$

Here

$$v_{\min} = \alpha \sqrt{Q}$$

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy Q in the detector.

$$\mathcal{A} \equiv \frac{\rho_0 \sigma_0}{2m_{\chi}m_{\rm r,N}^2} \qquad \qquad \alpha \equiv \sqrt{\frac{m_{\rm N}}{2m_{\rm r,N}^2}} \qquad \qquad m_{\rm r,N} = \frac{m_{\chi}m_{\rm N}}{m_{\chi} + m_{\rm N}}$$

 ρ_0 : WIMP density near the Earth σ_0 : total cross section ignoring the form factor suppression F(Q): elastic nuclear form factor $f_1(v)$: one-dimensional velocity distribution of halo WIMPs

Effects of Residue Background Events on Determining Properties of Halo Dark Matter Model-independent data analyses Reconstruction of the WIMP velocity distribution

Reconstruction of the WIMP velocity distribution

• Ansatz: reconstructing the measured recoil spectrum in the nth Q-bin

$$\left(\frac{dR}{dQ}\right)_{\text{expt, }Q\simeq Q_n} \equiv r_n \, e^{k_n (Q-Q_{s,n})} \qquad r_n \equiv \frac{N_n}{b_n}$$

• Logarithmic slope and shifted point in the *n*th *Q*-bin

$$\overline{Q - Q_n}|_n \equiv \frac{1}{N_n} \sum_{i=1}^{N_n} (Q_{n,i} - Q_n) = \left(\frac{b_n}{2}\right) \coth\left(\frac{k_n b_n}{2}\right) - \frac{1}{k_n}$$
$$Q_{s,n} = Q_n + \frac{1}{k_n} \ln\left[\frac{\sinh(k_n b_n/2)}{k_n b_n/2}\right]$$

Reconstructing the one-dimensional WIMP velocity distribution

$$f_{1}(\mathbf{v}_{s,n}) = \mathcal{N}\left[\frac{2Q_{s,n}r_{n}}{F^{2}(Q_{s,n})}\right] \left[\frac{d}{dQ}\ln F^{2}(Q)\Big|_{Q=Q_{s,n}} - k_{n}\right]$$
$$\mathcal{N} = \frac{2}{\alpha}\left[\sum_{a}\frac{1}{\sqrt{Q_{a}}F^{2}(Q_{a})}\right]^{-1} \qquad \mathbf{v}_{s,n} = \alpha\sqrt{Q_{s,n}}$$

[M. Drees and CLS, JCAP 0706, 011]

Effects of Residue Background Events on Determining Properties of Halo Dark Matter Model-independent data analyses Determination of the WIMP mass

Determination of the WIMP mass

• Estimating the moments of the WIMP velocity distribution

$$\langle v^{n} \rangle = \alpha^{n} \left[\frac{2Q_{\min}^{1/2} r_{\min}}{F^{2}(Q_{\min})} + I_{0} \right]^{-1} \left[\frac{2Q_{\min}^{(n+1)/2} r_{\min}}{F^{2}(Q_{\min})} + (n+1)I_{n} \right]$$

$$I_{n} = \sum_{a} \frac{Q_{a}^{(n-1)/2}}{F^{2}(Q_{a})} \qquad r_{\min} = \left(\frac{dR}{dQ} \right)_{expt, \ Q = Q_{\min}} = r_{1} e^{k_{1}(Q_{\min} - Q_{s,1})}$$

[M. Drees and CLS, JCAP 0706, 011]

Effects of Residue Background Events on Determining Properties of Halo Dark Matter
Model-independent data analyses
Determination of the WIMP mass

Determination of the WIMP mass

• Estimating the moments of the WIMP velocity distribution

$$\langle v^{n} \rangle = \alpha^{n} \left[\frac{2Q_{\min}^{1/2} r_{\min}}{F^{2}(Q_{\min})} + I_{0} \right]^{-1} \left[\frac{2Q_{\min}^{(n+1)/2} r_{\min}}{F^{2}(Q_{\min})} + (n+1)I_{n} \right]$$

$$I_{n} = \sum_{a} \frac{Q_{a}^{(n-1)/2}}{F^{2}(Q_{a})} \qquad r_{\min} = \left(\frac{dR}{dQ} \right)_{expt, \ Q = Q_{\min}} = r_{1} e^{k_{1}(Q_{\min} - Q_{s,1})}$$

[M. Drees and CLS, JCAP 0706, 011]

Determining the WIMP mass

$$\begin{split} m_{\chi}|_{\langle V^{n} \rangle} &= \frac{\sqrt{m_{\chi} m_{Y}} - m_{\chi} \mathcal{R}_{n}}{\mathcal{R}_{n} - \sqrt{m_{\chi} / m_{Y}}} \\ \mathcal{R}_{n} &= \left[\frac{2 Q_{\min,\chi}^{(n+1)/2} r_{\min,\chi} / F_{\chi}^{2}(Q_{\min,\chi}) + (n+1) I_{n,\chi}}{2 Q_{\min,\chi}^{1/2} r_{\min,\chi} / F_{\chi}^{2}(Q_{\min,\chi}) + I_{0,\chi}} \right]^{1/n} (X \longrightarrow Y)^{-1} \qquad (n \neq 0) \end{split}$$

[CLS and M. Drees, arXiv:0710.4296]

• With the assumption of a dominant SI WIMP-nucleus interaction

$$m_{\chi}|_{\sigma} = \frac{(m_{\chi}/m_{Y})^{5/2} m_{Y} - m_{\chi} \mathcal{R}_{\sigma}}{\mathcal{R}_{\sigma} - (m_{\chi}/m_{Y})^{5/2}} \qquad \qquad \mathcal{R}_{\sigma} = \frac{\mathcal{E}_{Y}}{\mathcal{E}_{\chi}} \left[\frac{2Q_{\min,\chi}^{1/2} r_{\min,\chi}/F_{\chi}^{2}(Q_{\min,\chi}) + I_{0,\chi}}{2Q_{\min,\chi}^{1/2} r_{\min,\chi}/F_{\chi}^{2}(Q_{\min,\chi}) + I_{0,\chi}} \right]$$

[M. Drees and CLS, JCAP 0806, 012]

Effects of residue background events

Measured recoil spectrum

- Background spectrum
 - Target-dependent exponential background spectrum

$$\left(\frac{dR}{dQ}\right)_{\rm bg,ex} = \exp\left(-\frac{Q/\rm keV}{A^{0.6}}\right)$$

Constant background spectrum

Measured recoil spectrum

- Background spectrum
 - Target-dependent exponential background spectrum

$$\left(\frac{dR}{dQ}\right)_{\rm bg,ex} = \exp\left(-\frac{Q/\rm keV}{A^{0.6}}\right)$$

Constant background spectrum

- Background window
 - > Entire experimental possible energy range (0 100 keV)
 - > Low energy range (0 50 keV)
 - > High energy range (50 100 keV)

Measured recoil spectrum

- Background spectrum
 - Target-dependent exponential background spectrum

$$\left(\frac{dR}{dQ}\right)_{\rm bg,ex} = \exp\left(-\frac{Q/\rm keV}{A^{0.6}}\right)$$

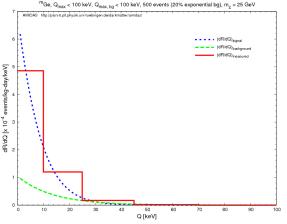
Constant background spectrum

- Background window
 - > Entire experimental possible energy range (0 100 keV)
 - > Low energy range (0 50 keV)
 - ➤ High energy range (50 100 keV)
- (Naively) simulate
 - only a few residue background events
 - induced by two or more different sources

Measured recoil spectrum

• Measured recoil spectrum

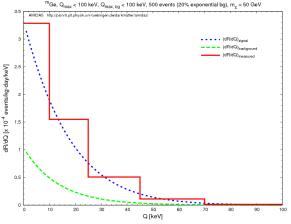
(⁷⁶Ge, 0 – 100 keV, exponential bg 0 – 100 keV, 500 events, 20% bg, $m_{\chi} =$ 10 GeV)



Measured recoil spectrum

• Measured recoil spectrum

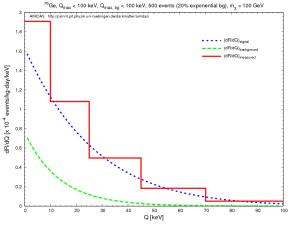
(⁷⁶Ge, 0 – 100 keV, exponential bg 0 – 100 keV, 500 events, 20% bg, $m_{\chi} =$ 25 GeV)



Measured recoil spectrum

Measured recoil spectrum

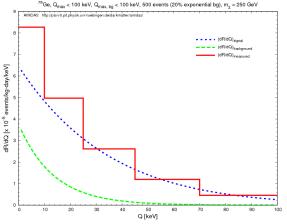
(⁷⁶Ge, 0 – 100 keV, exponential bg 0 – 100 keV, 500 events, 20% bg, m_{χ} = 50 GeV)



Measured recoil spectrum

• Measured recoil spectrum

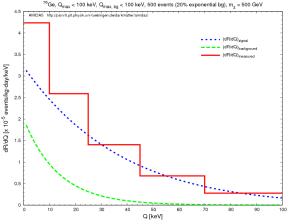
(⁷⁶Ge, 0 – 100 keV, exponential bg 0 – 100 keV, 500 events, 20% bg, $m_{\chi}=$ 100 GeV)



Measured recoil spectrum

Measured recoil spectrum

(⁷⁶Ge, 0 – 100 keV, exponential bg 0 – 100 keV, 500 events, 20% bg, $m_{\chi}=$ 250 GeV)

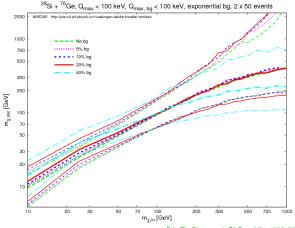


Measured recoil spectrum

Measured recoil spectrum

(⁷⁶Ge, 0 – 100 keV, exponential bg 0 – 100 keV, 500 events, 20% bg, $m_{\chi}=$ 500 GeV)

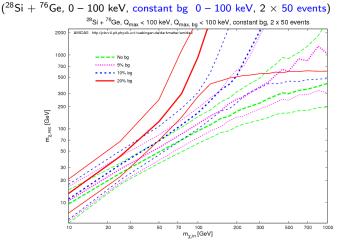
On the determination of the WIMP mass


Effects of Residue Background Events on Determining Properties of Halo Dark Matter - Effects of residue background events - On the determination of the WIMP mass

On the determination of the WIMP mass

• Reconstructed $m_{\chi, rec}$

(^{28}Si + $^{76}\text{Ge},$ 0 – 100 keV, exponential bg $\,$ 0 – 100 keV, 2 \times 50 events)


[[]Y. T. Chou and CLS, arXiv:1003.5277, accepted by JCAP]

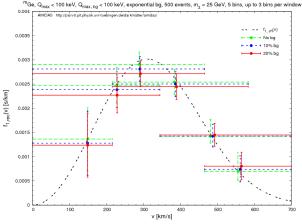
Effects of Residue Background Events on Determining Properties of Halo Dark Matter - Effects of residue background events - On the determination of the WIMP mass

On the determination of the WIMP mass

• Reconstructed $m_{\chi,rec}$

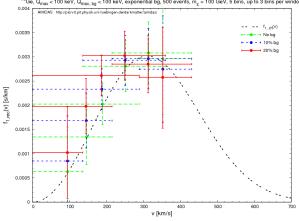
[Y. T. Chou and CLS, arXiv:1003.5277, accepted by JCAP]

C. L. Shan, NCKU Physics


On the reconstruction of the WIMP velocity distribution

On the reconstruction of the WIMP velocity distribution

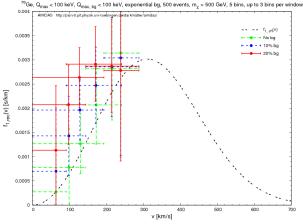
• Reconstructed $f_{1,rec}(v_{s,n})$


(⁷⁶Ge, 0 – 100 keV, exponential bg 0 – 100 keV, 500 events, $m_\chi=$ 25 GeV)

On the reconstruction of the WIMP velocity distribution

• Reconstructed $f_{1,rec}(v_{s,n})$

(⁷⁶Ge, 0 – 100 keV, exponential bg 0 – 100 keV, 500 events, $m_{\chi} =$ 100 GeV)


⁷⁶Ge, Q_{max} < 100 keV, Q_{max, bg} < 100 keV, exponential bg, 500 events, m_y = 100 GeV, 5 bins, up to 3 bins per window

· 藏动志學

On the reconstruction of the WIMP velocity distribution

• Reconstructed $f_{1,rec}(v_{s,n})$

($^{76}{\rm Ge},\,0-100$ keV, exponential bg 0-100 keV, 500 events, $m_{\chi}=$ 500 GeV)

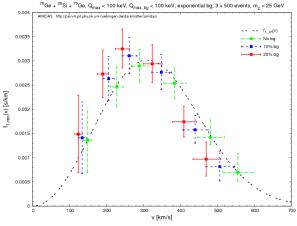
On the reconstruction of the WIMP velocity distribution

• Kinematic maximal cut-off of the recoil energy

$$Q_{\max,kin} = rac{v_{
m esc}^2}{lpha^2}$$

• Reconstruction of the one-dimensional WIMP velocity distribution

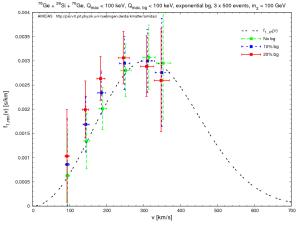
$$f_{1}(\mathbf{v}_{s,n}) = \mathcal{N}\left[\frac{2Q_{s,n}r_{n}}{F^{2}(Q_{s,n})}\right] \left[\frac{d}{dQ}\ln F^{2}(Q)\Big|_{Q=Q_{s,n}} - k_{n}\right]$$
$$\mathcal{N} = \frac{2}{\alpha}\left[\sum_{a}\frac{1}{\sqrt{Q_{a}}F^{2}(Q_{a})}\right]^{-1}$$
$$v_{s,n} = \alpha\sqrt{Q_{s,n}}$$
$$\alpha \equiv \sqrt{\frac{m_{\mathsf{N}}}{2m_{\mathsf{r},\mathsf{N}}^{2}}} = \frac{1}{\sqrt{2m_{\mathsf{N}}}}\left(1 + \frac{m_{\mathsf{N}}}{m_{\chi}}\right)$$


[M. Drees and CLS, JCAP 0706, 011]

On the reconstruction of the WIMP velocity distribution

• Reconstructed $f_{1,rec}(v_{s,n})$ with reconstructed $m_{\chi,rec}$

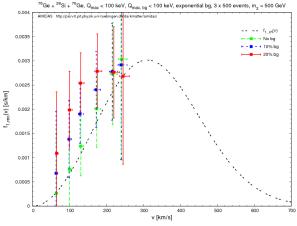
(⁷⁶Ge + 28 Si + 76 Ge, 0 – 100 keV, exponential bg, 3 imes 500 events, m_{χ} = 25 GeV)



On the reconstruction of the WIMP velocity distribution

• Reconstructed $f_{1,rec}(v_{s,n})$ with reconstructed $m_{\chi,rec}$

($^{76}\text{Ge}+\,^{28}\text{Si}+\,^{76}\text{Ge},\,0-100$ keV, exponential bg, 3 \times 500 events, $m_{\chi}=\,100$ GeV)



On the reconstruction of the WIMP velocity distribution

• Reconstructed $f_{1,rec}(v_{s,n})$ with reconstructed $m_{\chi,rec}$

(⁷⁶Ge + ²⁸Si + ⁷⁶Ge, 0 – 100 keV, exponential bg, 3 \times 500 events, m_{χ} = 500 GeV)

。 成功志學

- For determining m_{χ}
 - ➤ Background contribution in high/low energy ranges would over-/underestimate the reconstructed WIMP mass, especially if WIMPs are lighter/heavier than ~ 50/200 GeV.
 - > Maximal acceptable background ratio is $\sim 10\% 20\%$.

· 成功志學

- For determining m_{χ}
 - ➤ Background contribution in high/low energy ranges would over-/underestimate the reconstructed WIMP mass, especially if WIMPs are lighter/heavier than ~ 50/200 GeV.
 - > Maximal acceptable background ratio is $\sim 10\% 20\%$.
- For reconstructing $f_1(v)$
 - Background contribution in high/low energy ranges would shift the reconstructed WIMP velocity distribution to higher/lower velocities.
 - Over-/underestimated WIMP mass would (more strongly) shift the reconstructed WIMP velocity distribution to lower/higher velocities.
 - > Maximal acceptable background ratio is $\sim 5\% 10\%$.

· 成功志學

Summary

- For determining m_{χ}
 - ➤ Background contribution in high/low energy ranges would over-/underestimate the reconstructed WIMP mass, especially if WIMPs are lighter/heavier than ~ 50/200 GeV.
 - > Maximal acceptable background ratio is $\sim 10\% 20\%$.
- For reconstructing $f_1(v)$
 - Background contribution in high/low energy ranges would shift the reconstructed WIMP velocity distribution to higher/lower velocities.
 - Over-/underestimated WIMP mass would (more strongly) shift the reconstructed WIMP velocity distribution to lower/higher velocities.
 - > Maximal acceptable background ratio is $\sim 5\% 10\%$.
- For estimating $|f_p|^2$

Preliminary results will be given at SUSY10!

Summary

Thank you very much for your attention [http://myweb.ncku.edu.tw/~clshan/Publications/Talks/]