Gravitino, dark matter candidate and BBN

IDM2010 - Université Montpellier 2

Sean Bailly

LAPTH, Annecy

26-30 juillet 2010

SB, K. Jedamzik, G. Moultaka Phys.Rev.D80:063509,2009.

SB, K.Y. Choi, K. Jedamzik, L. Roszkowski JHEP 0905:103,2009.

SB, to appear very soon!

Supersymmetric scenario with R-parity conservation

- A very very interesting dark matter candidate : graviting
 - No direct detection
 - No indirect detection
- A nice probe for early Universe
 - Dark matter production
 - Big Bang Nucleosynthesis
 - Study in non-standard cosmological scenarios

- Supersymmetric scenario with R-parity conservation
- A very very interesting dark matter candidate : gravitino
 - No direct detection
 - No indirect detection
- A nice probe for early Universe
 - Dark matter production
 - Big Bang Nucleosynthesis
 - Study in non-standard cosmological scenarios

- Supersymmetric scenario with R-parity conservation
- A very very interesting dark matter candidate : gravitino
 - No direct detection
 - No indirect detection
- A nice probe for early Universe
 - Dark matter production
 - Big Bang Nucleosynthesis
 - Study in non-standard cosmological scenarios

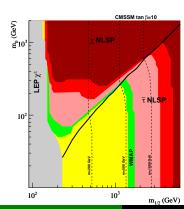
- Supersymmetric scenario with R-parity conservation
- A very very interesting dark matter candidate : gravitino
 - No direct detection
 - No indirect detection
- A nice probe for early Universe
 - Dark matter production
 - Big Bang Nucleosynthesis
 - Study in non-standard cosmological scenarios

Gravitino dark matter (1/2)

Non-thermal production

- All SUSY particle decay to NLSP
- Decay of NLSP to gravitino

$$\Omega_{3/2}^{\rm NTP} h^2 = \frac{m_{3/2}}{m_{\rm NLSP}} \Omega^{\rm NLSP} h^2$$


CMSSM

Parameters:

$$m_{1/2}, \quad m_0, \quad A_0 = 0$$

 $\tan \beta = 10, \quad \mu > 0$

- gravitino mass : m_{3/2}
- NLSP : neutralino or stau
- stau relic density :

$$\Omega_{\tilde{\tau}} \, \text{\it h}^2 = (2.2 - 4.4) \times 10^{-1} \left(\frac{\text{\it m}_{\tilde{\tau}}}{\text{1 TeV}}\right)^2$$

Gravitino dark matter (2/2)

Thermal production

• After inflation : reheating T_R

$$\frac{dn_{3/2}}{dt} + 3Hn_{3/2} = C_{3/2}$$

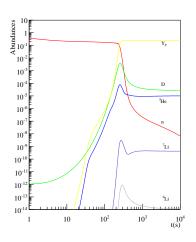
- $C_{3/2}$: scattering processes with gravitino production
- Examples:

$$\begin{array}{ccc} g+g & \to & \tilde{g}+\tilde{G} \\ g+\tilde{g} & \to & g+\tilde{G} \\ & \dots \end{array}$$

Gravitino thermal relic density: Pradler, Steffen '06

$$\Omega_{3/2}^{\text{TP}} h^2 \simeq 0.32 \left(\frac{10 \text{ GeV}}{m_{3/2}} \right) \left(\frac{m_{1/2}}{1 \text{ TeV}} \right)^2 \left(\frac{T_R}{10^8 \text{ GeV}} \right)$$

Big Bang Nucleosynthesis (1/2)


Standard BBN

- Production of light elements in the early Universe
- Predictive model : one parameter
- WMAP measurement

$$\eta = \frac{n_b}{n_\gamma} = (6.225 \pm 0.170) \times 10^{-10}$$

Observations

- Good agreement for D, ⁴He
- Discrepancies for lithium isotopes

BBN and lithium problem (2/2)

Élement	SBBN	Observations
$\left(\frac{6Li}{H}\right)$	$10^{-14} - 10^{-15}$	$(3-5) \times 10^{-12}$
$\left(\frac{^{7}\text{Li}}{\text{H}}\right)$	$(5.24^{+0.71}_{-0.67})\times10^{-10}$	$(1.2-1.9)\times10^{-10}$

- Post BBN evolution?
- Observation difficulties ?
- Stellar mechanisms
- Problem with SBBN ?

BBN and lithium problem (2/2)

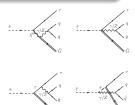
Élement	SBBN	Observations
$\left(\frac{6Li}{H}\right)$	$10^{-14} - 10^{-15}$	$(3-5) \times 10^{-12}$
$\left(\frac{^{7}\text{Li}}{\text{H}}\right)$	$(5.24^{+0.71}_{-0.67})\times10^{-10}$	$(1.2-1.9)\times10^{-10}$

- Post BBN evolution?
- Observation difficulties ?
- Stellar mechanisms
- Problem with SBBN ?

Decay of relic particle

Stau with a lifetime $\tau_X \sim 10^2 - 10^6$ s

- Decay to standard model particles: injection of photons, electrons and nucleons
- Non-thermal reactions
- Modification of abundances

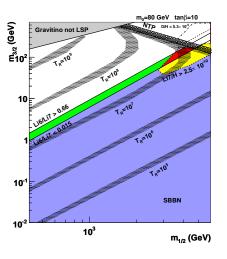

Calculation procedure

- Spectrum : SuSpect
- Relic density : MicrOMEGAs
- Lifetime and electromagnetic branching ratio and energy: CalcHEP

$$\tilde{\tau} \to \tau \tilde{\mathbf{G}}$$

Hadronic branching ratio and energy

$$\Gamma(ilde{ au} o au ilde{G}qar{q}) = \int_{m_{qar{q}}^{
m cut}}^{m_{ar{ au}}-m_{3/2}-m_{ au}} dm_{qar{q}} rac{d\Gamma(ilde{ au} o au ilde{G}qar{q})}{dm_{qar{q}}}$$



CMSSM and standard cosmology

solutions : $m_{\tilde{\tau}} \sim 1-1.8 \text{ TeV}, \qquad m_{3/2} \sim 60-120 \text{ GeV}, \qquad T_R \sim 10^7 \text{ GeV}$

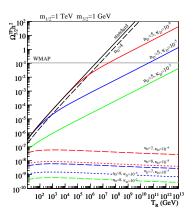
Non-standard cosmology

- This scenario is also a probe for non-standard cosmology
- No constraint before BBN on the composition of the Universe
- Dark component with positive energy density Arbey, Mahmoudi

$$ho_D(T) = \kappa_D
ho_{
m rad}(T_{
m BBN}) \left(rac{T}{T_{
m BBN}}
ight)^{n_D}$$

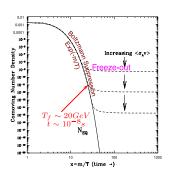
BBN is a radiative dominated era

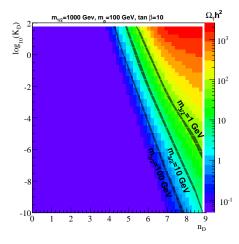
$$0 < \kappa_D < 1$$
 and $4 \le n_D \le 8$

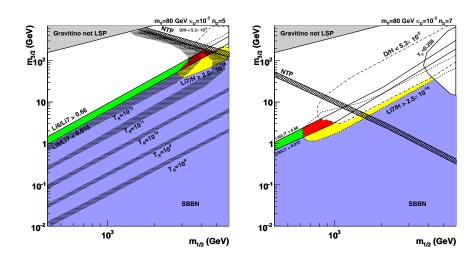

The Hubble parameter reads

$$H^2 = \frac{8\pi G}{3} \left(\rho_B + \rho_D \right)$$

TP: solving again the Boltzmann equation


$$\Omega_{3/2}^{\text{TP}} h^2 = \Omega_{3/2}^{\text{stand},\text{TP}} h^2 \times {}_2F_1\left(1/N,1/2;1+1/N;-\kappa_D\left(\frac{T_R}{T_{\text{BBN}}}\right)^N\right)$$


 \Rightarrow Suppression of gravitino production


NTF

- Freeze-out occurs earlier due to larger Hubble parameter
- Larger stau abundance

Lithium resolution

Conclusion

- Solutions for dark matter compatible with WMAP
- Solutions for SBBN and lithium problems
- Non-standard cosmological scenario changes constraints on reheating temperature and required masses to solve lithium problems
- Collider perspective: lighter spectrum may be reachable at LHC 14 TeV run. If SUSY events are produced, quite clear signal as the stau is stable in detector and would be seen as a muon with slow velocity