Dark Matter searches with H.E.S.S. towards dwarf spheroidals galaxies

Aion Viana On behalf of the HESS collaboration

IRFU, CEA-Saclay

- ➤ H.E.S.S. telescope array
- ➤ Indirect Dark Matter search principle
- Dwarf spheroidal galaxies H.E.S.S. campaign
- > Dark Matter flux enhancement effects
- > Summary

L

The H.E.S.S. telescope array

Array of four Imaging Atmospheric Cherenkov Telescopes located in Namibia (1800m a.s.l.)

- 12 m diameter telescopes : 107 m² each
- Observations on moonless nights,
- ~1000h/year
- Field of view of 5°

- Stereoscopic reconstruction
- Angular resolution < 0.1° / γ
- Energy threshold (zenith) ~ 100 GeV
- Energy resolution ~ 15%

5th telescope(28m) in contruction: HESS 2

2

Indirect dark matter searches through gamma-rays

DM self-annihilation rate:

$$\Gamma_{\chi} \approx \sigma v \frac{\rho_{\chi}^2}{m_{\chi}^2}$$

Gamma-ray flux from annihilation of a WIMP:

$$\frac{\mathrm{d}\Phi(\Delta\Omega, E_{\gamma})}{\mathrm{d}E_{\gamma}} = \frac{1}{8\pi} \underbrace{\frac{\langle \sigma v \rangle}{m_{\chi}^{2}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}}}_{Particle\ Physics} \times \underbrace{\bar{J}(\Delta\Omega)\Delta\Omega}_{Astrophysics} \quad \mathrm{cm}^{-2}\mathrm{s}^{-1}\mathrm{GeV}^{-1}$$

where

Gamma spectrum: typically a continuum with an cut-off at the DM particle mass

and

$$\overline{J}(l,b) = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int_{los} \rho^2[r(s)] ds$$

HESS point-like obs.: $\Delta\Omega \approx 10^{-5} sr$

Dark matter halo modeling strong dependence; density profile model is needed

3

Indirect dark matter searches through gamma-rays

DM self-annihilation rate:

$$\Gamma_{\chi} \approx \sigma v \frac{\rho_{\chi}^2}{m_{\chi}^2}$$

Gamma-ray flux from annihilation of a WIMP:

$$\frac{\mathrm{d}\Phi(\Delta\Omega, E_{\gamma})}{\mathrm{d}E_{\gamma}} = \frac{1}{8\pi} \underbrace{\frac{\langle \sigma v \rangle}{m_{\chi}^{2}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}}}_{Particle\,Physics} \times \underbrace{\bar{J}(\Delta\Omega)\Delta\Omega}_{Astrophysics} \qquad \mathrm{cm}^{-2}\mathrm{s}^{-1}\mathrm{GeV}^{-1}$$

where

Gamma spectrum: typically a continuum with an cut-off at the DM particle mass

and

$$\overline{J}(l,b) = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int_{los} \rho^2[r(s)] ds$$

HESS point-like obs.: $\Delta\Omega \approx 10^{-5} sr$

Dark matter halo modeling strong dependence; density profile model is needed

Indirect dark matter searches through gamma-rays

DM self-annihilation rate:

$$\Gamma_{\chi} \approx \sigma v \frac{\rho_{\chi}^2}{m_{\chi}^2}$$

Gamma-ray flux from annihilation of a WIMP:

$$\frac{\mathrm{d}\Phi(\Delta\Omega, E_{\gamma})}{\mathrm{d}E_{\gamma}} = \frac{1}{8\pi} \underbrace{\frac{\langle \sigma v \rangle}{m_{\chi}^{2}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}}}_{Particle\ Physics} \times \underbrace{\bar{J}(\Delta\Omega)\Delta\Omega}_{Astrophysics} \quad \mathrm{cm}^{-2}\mathrm{s}^{-1}\mathrm{GeV}^{-1}$$

where

Gamma spectrum: typically a continuum with an cut-off at the DM particle mass

and

$$\overline{J}(l,b) = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int_{los} \rho^2[r(s)] ds$$

HESS point-like obs.: $\Delta\Omega \approx 10$

Dark matter halo modeling strong dependence; density profile model is needed

Dark Matter halo modeling

$$\rho(r) \rightarrow ?$$

- N-body numerical simulations => Cusp profile
- Solution of the Jeans equation(hydrodynamics) => Cored profile

•Two differents types of DM halo profiles are taken as examples:

-cored profile: analytic resolution of the Jeans equation

$$-\rho_{NFW}(r) = \frac{A}{r(r+r_s)^2}$$

$$\rho_{core}(r) = \frac{v_a^2}{4\pi G} \frac{3r_c^2 + r^2}{(r_c^2 + r^2)^2}$$

The parameters are found after observation of the stars dynamics(luminous density, velocity dispersion, velocity anisotropy...) inside the galaxy

6

Observation campaigns of dSph galaxies, satellites of the Milky Way

• Four dSph galaxies (and candidates) studies published (or in process) by HESS

	d(kpc)	Virial mass (solar mass)	T _{obs} (h)	Observation Zenith angle	Tidal disruption
Sagittarius	24	3.0 x 10 ⁸	11 (> 40 h now)	19°	Yes
Canis Major	8	3.0 x 10 ⁸ ??	10	10°	Yes
Sculptor	79	1.0 x 10 ⁹	11.8	14°	No
Carina	101	2.0 x 10 ⁸	14.8	34°	+/-

Sensitivity curves to DM annihilation

Sensitivity curves to DM annihilation

Expected:

$$N_{\gamma}^{95\%}(\sigma v, m_{DM}) \propto \frac{d\Phi}{dE}(\sigma v, m_{DM}, \overline{J}) \times (active area) \times time$$

• Comparing the mesured N⁹⁵ to the expected N⁹⁵ => Upper limit on σν

- > the velocity-weighted cross-section is then calculated as function of the DM particle mass
- > two candidates of Dark Matter particle are usually studied: neutralino (SUSY)
 Kaluza-Klein (UED) particles

9

Sensitivity curves for Sagittarius dSph and Canis Major overdensity

Constraints on dark matter sensitivity curve at 95% C.L.:

(HESS Collaboration (F. Aharonian et al.) Astropart. Phys 2007)

(See also C. Farnier for HESS colab., IDM2008)

$$\overline{J} = 0.07 - 2.6 \overline{J}_{NFW}^{GC}$$
Large uncertainty

- Some pMSSM models with higgsino-like neutralino excluded
- BUT halo modeling of Sgr dSph too hard due to tidal stripping

(HESS Collaboration (: F. Aharonian et al.). ApJ 2008)

- $\bar{\boldsymbol{J}} = 0.2 \bar{\boldsymbol{J}}_{NFW}^{GC}$
- Disrupted dwarf galaxy or simply a part of the warped Galactic disk?
- On the assumption of a dSph it has a <u>very delicated</u> halo modeling

Sensitivity curves for Sculptor and Carina dSph

Constraints on dark matter sensitivity curve at 95% C.L.:

$$\overline{\boldsymbol{J}} = 0.2 - 2.2 \times 10^{-2} \overline{\boldsymbol{J}}_{NFW}^{GC}$$

$$\overline{\boldsymbol{J}} = 0.7 - 1.5 \times 10^{-3} \overline{\boldsymbol{J}}_{NFW}^{GC}$$

- Similar analyses were made for both galaxies
- Various DM halo profile were studied in the case of Sculptor => helps to estimate the errors due to the halo modeling
- Complementary constrains from Fermi on Sculptor
- No Fermi result for Carina

11

The gamma-ray flux can be enhanced by changes in the particle physics nature or the particle density distribution(astrophysics)

From particle physics:

- > Boost in the annihilation cross-section;
- > New contribution in the annihilation spectrum;

From astrophysics:

> Contribution of the substructures(sub-halos) to the overall density $<=<\rho^2>/<\rho>^2$

Particle physics enhancements: i) Sommerfeld effect

Low velocity QFT(Schrodinger equation) effect due the interaction of the DM particles with a Yukawa potential(weak force) in its annihilation proces

$$\langle \sigma v \rangle = S \langle \sigma v \rangle_o$$

Very effective on the low-velocity regime!!

DM particles velocity dispersion:

~10.0 km/s for Sculptor

~7.5 km/s for Carina

13

• Particle physics enhancements: ii) Light charged particles

« Whenever WIMPs annihilate into pairs of charged particles, this process will with a finite probability automatically be accompanied by internal bremsstrahlung, i.e. the emission of an additional photon in the final state »

Bringmann, Bergstrom and Edsjo, JHEP 2008

$$\frac{\mathrm{d}N_{W^+W^-}}{\mathrm{d}x} \approx \frac{\alpha_{\mathrm{em}}}{\pi} \frac{4(1-x+x^2)^2}{(1-x+\epsilon/2)x} \times \left[\log\left(2\frac{1-x+\epsilon/2}{\epsilon}\right) - 1/2 + x - x^3\right],$$
(8)

- Contribution will depend on the HESS acceptance in the energy range
- In the wino case only significant for $E_{\gamma} > m_{\chi}/2$

Astrophysics enhancements i.e. galactic substructures(« Clumps»):

Motivations: simulations are scale invariant, enhancement may be important inside dSph

BUT No significant effect towards dSphs center in a point-like analysis

Montpellier: July 2010

15

- > Resonant exclusion limits with Sommerfeld effect
- > Internal Bremstrahlung only significatif for low DM particle mass

16

Summary

- Several Dwarf Spheroidals galaxies studied by HESS collaboration
- Observations of Sagittarius, Canis Major, Carina and Sculptor dSph didn't show any signal => constraints on Dark Matter self-annihilation cross-section
- despite no signal detection so far, dSph remains as one of the most promising environments for Dark Matter searches

	Motivations	Results	Issues
Sagittarius	small distance from usDM-dominated environment	•Some pMSSM models with higgsino-like neutralino excluded	 halo modeling very uncertain interaction with the MW disk must have disrupted it
Canis Major	small distance from usoverdensity environment	strong constraints	astrophysical nature under disputevery disrupted by tidal effects
Sculptor/ Carina	 far from the MW disk and center no significant disruption(at least in Sculptor case) 	large DM halo profile uncertainty coveragestrong constraints with Sommerfeld effect	• large distance from the sun (1/D²)

17

Backup slides

Sagittarius dSph

Constraints on Kaluza_Klein dark matter Sensitivity curve at 95% C.L.

Kaluza-Klein model predictions are analytic:

$$\langle \sigma v \rangle = \frac{95g_1^4}{324\pi m_{LKF}^2}$$

$$\simeq rac{1.7 imes 10^{-26} \, {
m cm}^3/{
m s}}{\left(m_{
m LKP}/{
m TeV}
ight)^2}.$$

Some KK models providing a relic density compatible with WMAP constraints are excluded in the case of the cored profile

Sculptor dSph

Constraints on Kaluza_Klein dark matter Sensitivity curve at 95% C.L.

Kaluza-Klein model predictions are analytic:

$$\langle \sigma v \rangle = rac{95g_1^4}{324\pi m_{
m LKF}^2}$$

$$\simeq rac{1.7 \times 10^{-26} \,
m cm^3/s}{\left(m_{
m LKP}/{
m TeV}\right)^2}.$$

Dark Matter halo modeling

•From Jeans Equation:
$$M(r) = r \langle v_r^2 \rangle (\frac{d \ln \rho}{d \ln r} + \frac{d \ln \langle v_r^2 \rangle}{d \ln r} - 2\beta)$$

- •Assumed $\rightarrow \beta(r)$ solve for M(r) to get ρ_{dark} OR fit DM halo parameters to $\langle v^2_r \rangle$
- •Two differents types of DM halo profiles are produced:

-NFW profile: fit of (A,r_s) parameters to
$$\langle v^2_r \rangle$$
-cored profile: $\langle v^2_r \rangle$ assumed to be flat - \Rightarrow analytic resolution of the Jeans equation
$$\rho_{core}(r) = \frac{A}{r(r+r_s)^2}$$

$$\rho_{core}(r) = \frac{v_a^2}{4\pi G} \frac{3r_c^2 + r^2}{(r_c^2 + r^2)^2}$$

Sensitivity curves to DM annihilation

$$N_{\gamma} \, = \, T_{\rm obs} \, \int_0^{m_{DM}} A_{\rm eff}(E_{\gamma}) \frac{d\Phi(\Delta\Omega, E_{\gamma})}{dE_{\gamma}} dE_{\gamma} \label{eq:N_gamma}$$

• The 95% C.L. limit on N γ provides a 95% C.L. limit on the velocity-weighted cross section for a given DM profile:

$$\langle \sigma v \rangle_{\min}^{95\% C.L.} = \frac{8\pi}{\overline{J}(\Delta\Omega)\Delta\Omega} \times \frac{m_{\chi}^2 N_{\gamma,tot}^{95\% C.L.}}{T_{\text{obs}} \int_0^{m_{\chi}} A_{eff}(E_{\gamma}) \frac{dN_{\gamma}}{dE_{\gamma}}(E_{\gamma}) dE_{\gamma}}$$

- ➤ the velocity-weighted cross-section is then calculated as function of the DM particle mass
- ➤ two candidates of Dark Matter particle are usually studied: neutralino (SUSY) - Kaluza-Klein (UED) pagicles

Gamma-ray signal enhancement effects for Fornax Cluster (1)

Astrophysics enhancements i.e. galactic substructures(« Clumps»):

IDM2010

Montpellier: July 2010

Imaging Atmospheric Cherenkov Telescopes technique

- Improve the hadron rejection

- Capacity to construct gamma maps

24