New decay modes of gravitino dark matter

Based on Phys.Rev.D81:075024,2010, arXiv:1003.3401, PRD (with Ki-Young Choi) and 1007.1728 (with K-Y C.,D. Restrepo, D. Zapata)

> Carlos E. Yaguna UAM and IFT 2010

In susy models with broken R-parity the gravitino is the only viable dm candidate

The LSP becomes unstable

Neutralino is not a viable dm candidate

If \widetilde{G} is the LSP, it is a dm candidate

We consider bilinear $R_p: \langle \tilde{\nu} \rangle \neq 0$

 \widetilde{G} lifetime \gg age of the Universe

Buchmuller, Covi, Ibarra, Moroi, Muñoz, etc The dominant 2-body decay modes of the gravitino are $\gamma \nu$ and $W \ell$

G decays are determined 10^{0} by $M_i, m_{\widetilde{G}}, \langle ilde{
u}
angle$ $W\tau$ Branching Ratio $Z^0 \nu$ 10^{-1} For $m_{\widetilde{C}} < M_W$, $\gamma \nu$ is the $h\nu_{\tau}$ only possible 2-body fs 10^{-2} $\gamma \nu_{\tau}$ The final states $W^*\ell$ and 10^{-3} $Z^*\nu$ may be important 100 1000 $m_{3/2}~({
m GeV})$

figure from 0809.5030 by Covi et al

Three-body gravitino decays into $W^*\ell$ and $Z^*\nu$ had not been considered before

Two diagrams contribute to these decays

The four-vertex diagram $\not\propto U_{\widetilde{W}\widetilde{W}}\sim M_W/M_2$

The decay into $\gamma \nu$ tends to be suppressed

$$\Gamma(\widetilde{G} o \gamma
u_ au) = rac{\xi_ au^2 m_{\widetilde{G}}{}^3}{64 \pi M_P^2} |U_{\widetilde{\gamma} \widetilde{Z}}|^2 \propto 1/M_2^2$$

Gravitino decays can easily be dominated by three-body final states

 $W^*\tau$ is dominant for $M_W > m_{\widetilde{G}} > 50~{
m GeV}$ $M_1 = 300 \text{ GeV}$ γν $\tau f \bar{f} (\tau W)$ 0.8 $v_{r}f\bar{f}(v_{r}Z^{*})$ **Branching Ratios** 0.6 Even $Z^*\nu_{\tau}$ can be more important than $\gamma \nu$ 0.4 0.2 **3-body gravitino decays** cannot be neglected $^{0}_{40}$ 50 70 60 80 Gravitino Mass (GeV)

The 3-body final states become more relevant for larger gaugino masses

The gravitino lifetime is significantly affected by these new decay modes

It could be more than 100 times smaller

Indirect detection of G dm is strongly affected:

Suppressed γ, ν lines New continuum of γ s New antimatter signals

The expected gamma ray flux from gravitino decays is significantly altered

The γ line is less apparent

The new γ continuum could be observed

These effects are typically sizable

We derive new constraints on the gravitino lifetime from recent FERMI data

The 3-body decays of gravitinos give rise to an non-zero antiproton flux

In \mathbb{R}_p models, the 3-body decays of the gravitino cannot be neglected

They are typically sizable for $M_{\tilde{G}} < M_W$

They modify the \tilde{G} lifetime and BRs

They alter the \tilde{G} indirect detections signals

