Fundamental Particle Physics Lab.

Division of Particle and Astrophysical Sciences School of Science of Nagoya University

Nuclear Emulsion for Directional Dark Matter Search

Tatsuhiro Naka Nagoya University, Japan

M.Nakamura,T.Nakano,O.sato, Y.Tawara @Nagoya Univ. M.Kimura @ Toho Uhiv. Y.Suzuki @ Spring-8 K.Kuge @Chiba Univ.

IDM2010 @ Monpellier, France 2010.7.27

Nuclear Emulsion

Concept of Directional detection by Nuclear Emulsion.

It is a solid detector that is possible to do the directional DM search.

New Nuclear Emulsion for directional dark matter detection

Usual Nuclear emulsion

Usual Nuclear Emulsion ⇒AgBr crystal size : 200nm

Low resolution for directional DM search!

High resolution emulsion (Nano Imaging Tracker:NIT)

normal emulsion(OPERA emulsion)

size $200 \pm 16 \text{ nm}$ density $2.8g/cc \rightarrow V_{AgBr}$: $V_{gel} = 3 : 7$ \downarrow **2.3 grains/µm**

size $40 \pm 9 \text{ nm}$ density 2.8g/cc $\rightarrow V_{AgBr}$: $V_{gel} = 3 : 7$ \downarrow **11 grains/µm**

5-times higher resolution

Confirmation of the sensitivity of nuclear emulsion to the low velocity Kr ion.

Low velocity ion created by an implantation system

-NIT can detect the tracks with >100nm -More than 60% tracking @ >200keV Kr (Br ion)

Optical image of nuclear recoil tracks without any treatment (~100nm track)

SEM image

~100nm track can't be recognized as a track with optical microscope, because optical resolution is about ~µm

Optical scanning is essential for large volume events searching.

Concept of Readout system

Readout by expansion technique

Ideal optical microscope resolution ∠R=0.61*λ/NA ~200nm
By approx. 2 times expansion of the emulsion plate, Ag track becomes noticeably clear
⇒detect elongated tracks by optical microscope.

Concept of data taking for track selection

Selected tracks by optical microscope

X-ray microscope measurement

- track length
- better directional determination

Nuclear Emulsion Production

We started to produce nuclear emulsion in laboratory with retired engineer of Fuji Film . \Rightarrow He produced the NIT emulsion and other emulsion for neutrino experiment .

First produced emulsion

Motivation

- -Stable production of the nuclear emulsion for DM search
- -the environment for a rapid development
- -R&D of Low background emulsion
- -R&D of finer grain emulsion (low energy threshold)
- -First test toward underground production

We could detect alpha tracks.

Conclusion

- Confirmed the method for readout of <1µm tracks (This was the most challenging for this experiment)
 - \Rightarrow expansion readout by optical MS \rightarrow X-ray MS
- Emulsion production facility was complete, and started the emulsion production.
- \Rightarrow R&D, rapid production of emulsion, cost-down

We are almost ready for first test run by above technique.

Planning in near future (this and next year)

2010-2011

- Tuning of Image processing scheme
- Development of automatic optical scanning microscope⇒improvement of the current scanning stage

Production of good quality NIT.

<u>2011-2012</u>

Start of the neutron and background run. Make the prototype detector and facility.

Back up

Nuclear Emulsion Experiment

DONUT: 120kg emulsion (10% volume of this detector)

The accuracy for expansion

WIMP sensitivity

WIMPs event rate 1 counts/(1000kg year) limit

