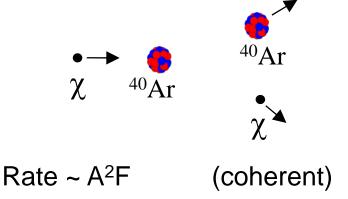
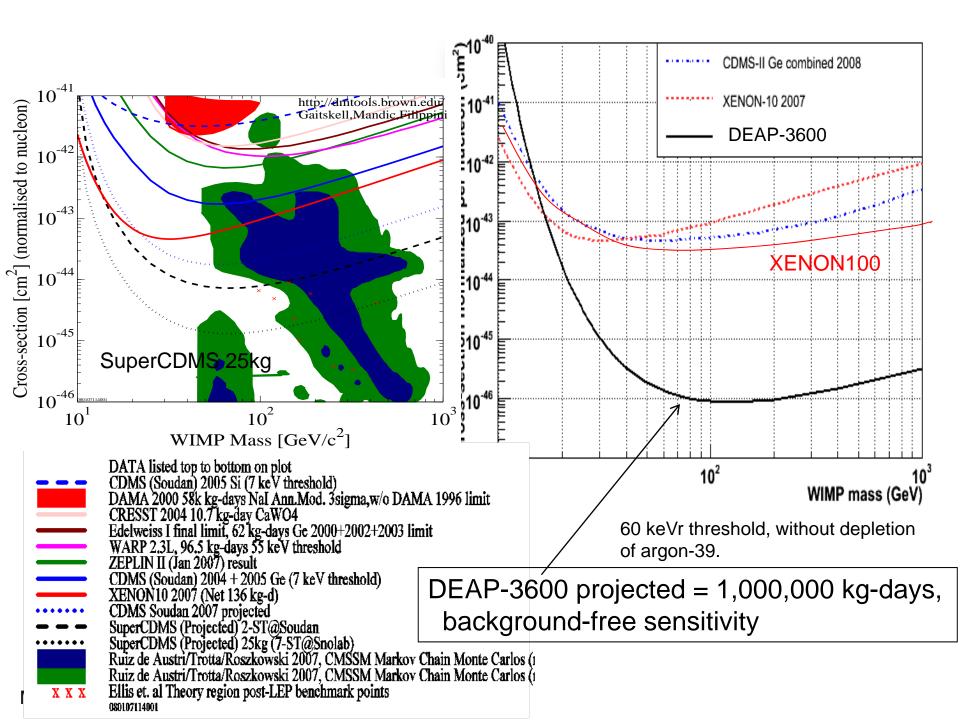

Dark Matter Search at SNOLAB with DEAP-3600

- Direct DM search with LAr
- DEAP-3600 design
- Backgrounds
- Project Status



Mark Boulay Queen's University, Canada


IDM 2010, Montpellier

Liquid argon as a dark matter target

•Less loss of coherence for lighter nuclei, argon can provide useful information even with relatively high energy threshold

- •Well-separated singlet and triplet lifetimes in argon allow for good pulse-shape discrimination (PSD) of β/γ 's using only scintillation time information, projected to 10^{-10} at 20 keV_{ee} (see Astroparticle Physics 25, 179 (2006) and arxiv/0904.2930)
- •Very large target masses possible, since no absorption of UV scintillation photons in argon, and no e-drift requirements.
- •1000 kg argon target allows 10⁻⁴⁶ cm² sensitivity (SI) with ~20 keV_{ee} threshold, 3-year run

SNOLAB Experimental Program DEAP-3600, MiniCLEAN 360 cube Hall Cryopit Utility Phase III Drift Stub SuperCDMS Now:PICASSO-II Now: DEAP-1 Now:PUPS Ladder Labs SNO South Cavern Low Background Drift Counting Personnel SNO+ facilities Utility Area All experimental areas in cleanroom conditions

TANK DIAMETER (TO CENTRELINE OF CORRUGATION)

DEAP-3600 Detector

85 cm radius acrylic sphere contains 3600 kg LAr

(55 cm, 1000 kg fiducial, sealed vacuum vessel to control backgrounds)

266 8" PMTs (warm PMTs to increase light efficiency)

50 cm acrylic light guides and fillers for neutron shielding (from PMTs)

Steel shell for safety to prevent cryogen/water mixing (AV failure)

Only LAr, acrylic, and WLS (10 g) inside of neutron shield

8.5 m diameter water shielding sized for reduction of (α,n) from rock

DEAP collaborators (Canadian groups)

- University of Alberta
 - **D. Grant**, P. Gorel, **A. Hallin**, J. Soukup, C. Ng, B. Beltran, K. Olsen
- Carleton University
 K. Graham, C. Ouellet
- Queen's University
 - M. Boulay, B. Cai, D. Bearse, K. Dering, M. Chen, S. Florian, R. Gagnon, V.V. Golovko, M. Kuzniak, J.J. Lidgard, A. McDonald, A.J. Noble, E. O'Dwyer, P. Pasuthip, T. Pollman, W. Rau, T. Sonley, P. Skensved, M. Ward
- SNOLAB/Laurentian
 - B. Cleveland, F. Duncan, R. Ford, C.J. Jillings, M. Batygov
- SNOLAB
 - I. Lawson, K. McFarlane, P. Liimatainen, O. Li
- TRIUMF
 - F. Retiere, Alex Muir

DEAP/CLEAN collaborators

- University of Alberta: P. Gorel, A. Hallin, J. Soukup, C. Ng, B. Beltran, K. Olsen
- Boston University: D. Gastler, E. Kearns
- Carleton University: K. Graham, C. Ouellet
- Harvard: J. Doyle
- Los Alamos National Laboratory: C. Alexander, S.R. Elliott, V. Gehman, V. Guiseppe, W. Louis, A. Hime, K. Rielage, S. Siebert, J.M. Wouters
- MIT: J. Monroe, J. Formaggio
- University of New Mexico: F. Giuliani, M. Gold, D. Loomba
- NIST Boulder: K. Coakley
- University of North Carolina: R. Henning, M. Ronquest
- University of Pennsylvania: J. Klein, A. Mastbaum, G. Orebi-Gann
- Queen's University: M. Boulay, B. Cai, D. Bearse, K. Dering, M. Chen, S. Florian, R. Gagnon, V.V. Golovko, M. Kuzniak, J.J. Lidgard, A. McDonald, A.J. Noble, E. O'Dwyer, P. Pasuthip, T. Pollman, W. Rau, T. Sonley, P. Skensved, M. Ward
- SNOLAB/Laurentian: B. Cleveland, F. Duncan, R. Ford, C.J. Jillings, M. Batygov
- **SNOLAB:** I. Lawson, K. McFarlane, P. Liimatainen, O. Li
- University of South Dakota: D.-M. Mei
- Syracuse University: R. Schnee, M. Kos, B. Wang
- TRIUMF: F. Retiere, A. Muir
- Yale University: W. Lippincott, D.N. McKinsey, J. Nikkel

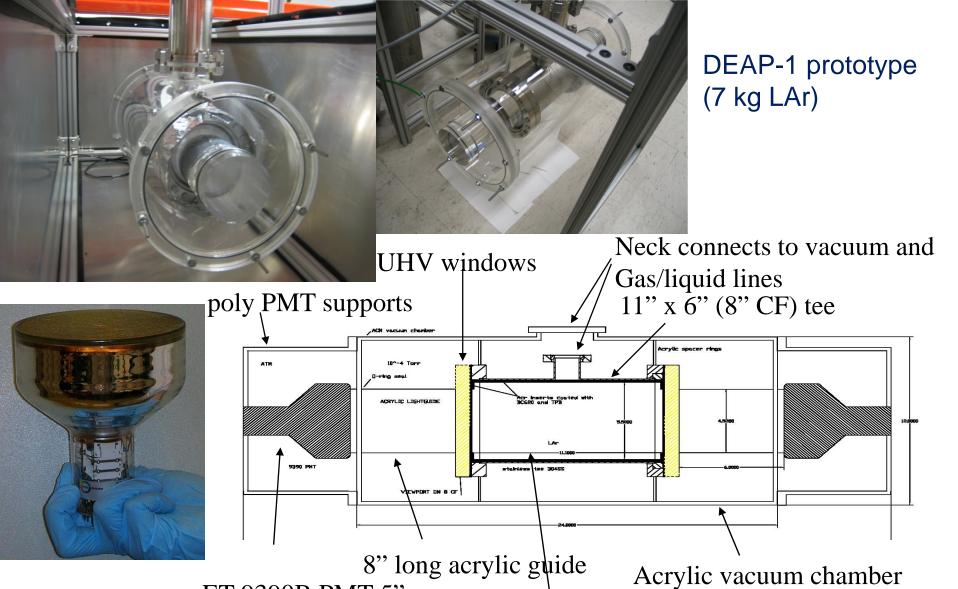
CAD groups primarily focused on DEAP-3600

US groups: miniCLEAN (includes LNe target, solar neutrino R&D)

Backgrounds to WIMP interactions

Beta/gamma interactions
 (dominated by ³⁹Ar for LAr experiments)
 pulse shape discrimination – PSD
 isotopically-reduced argon decreases background rate

Working with Princeton group to obtain 4 tonnes of depleted argon for DEAP-3600 with 20X depletion factor


neutron-induced nuclear recoils
 muon suppression underground at SNOLAB
 detector design, clean materials for (α,n) neutrons
 (acrylic vessel+light guides for attenuation)

surface contamination

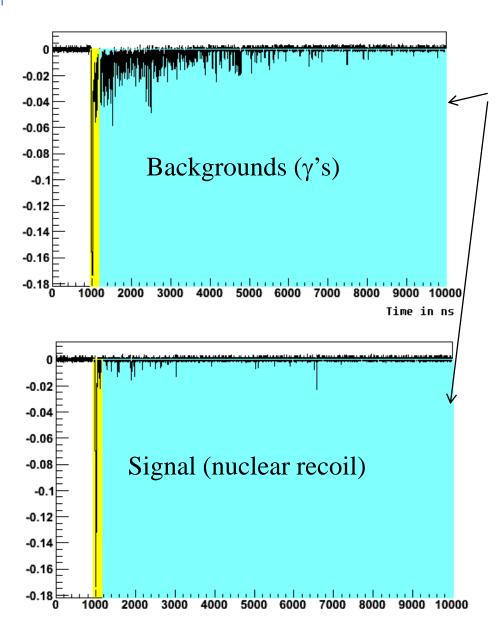
clean detector surfaces in-situ (resurfacer device) vertex reconstruction for fiducial volume definition (10 cm resolution at threshold)

Background	Fiducial No. Events in Energy ROI (3 yrs,1000 kg)	Materials Purity Specification (based on MC calculations)
Neutrons from PMTs	<0.2	70 ppb U, Th in PMTs 50 cm acrylic for n moderation
²²² Rn/daughters on detector surface	<0.1	²²² Rn emanation < 5 μBq
²³⁸ U in acrylic	<0.01	<0.2 ppt ²³⁸ U in acrylic
²³² Th in acrylic	<0.01	<0.9 ppt ²³² Th in acrylic
²¹⁰ Pb in acrylic	<0.01	<6x10 ⁻²¹ g/g ²¹⁰ Pb in acrylic

- •222Rn emanation measurements (at Queen's) limited to ~60 μ Bq, building new lower-background emanation system
- •Requirements for acrylic similar to SNO acrylic vessel, new Ge well-detector purchased for ²¹⁰Pb assay with required sensitivity (vaporize & count kg's of acrylic)
- •Other materials less critical, acrylic moderates external neutrons; not sensitive to γ 's. Mark Boulay, Queen's

ET 9390B PMT 5"

7 kg LAr


inner surface 97% diffuse reflector, Covered with TPB wavelength shifter

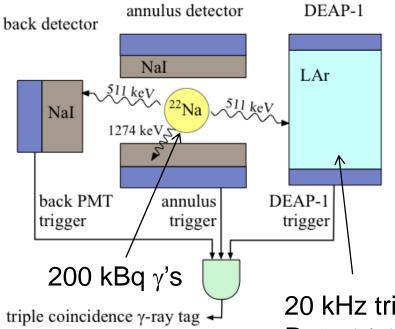
DEAP-1 detector in water shield

DEAP-1

Pulse-Shape Discrimination in Liquid Argon

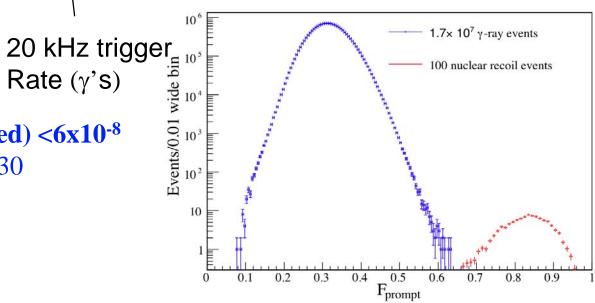
PMT signals

$$F_{prompt} = \frac{\text{PromptPE } (150ns)}{\text{TotalPE } (9\mu s)}$$


Yellow: Prompt light region

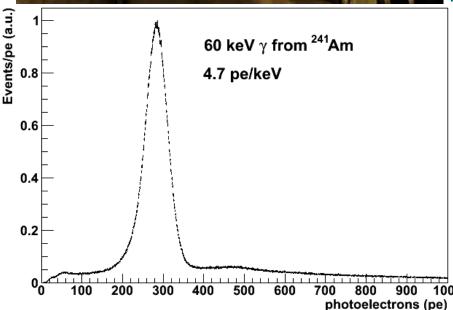
Blue: Late light region

DEAP-1


Tagged γ Calibration

0.9 0.8 0.7 0.6 0.50.4 0.3 0.2 50 150 200 250 300 Number of photoelectrons

β/γ leakage (statistics limited) <6x10⁻⁸ arXiv.org: 0904.2930

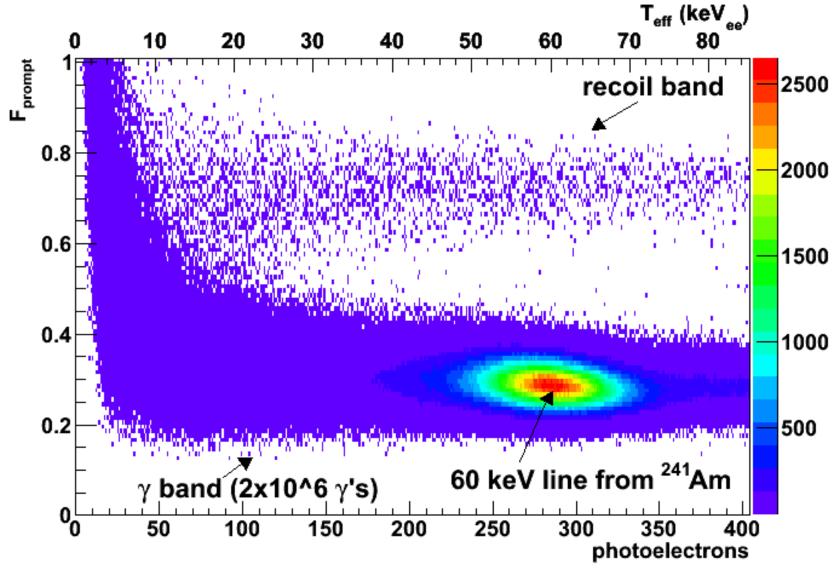


Background rates in DEAP-1 (low-energy region 120-240 p.e.)

Date	Background Rate (in WIMP ROI)	Configuration	Improvements for this rate
April 2006	20 mBq	First run (Queen's)	Careful design with input from materials assays (Ge γ couting)
August 2007	7 mBq	Water shield (Queen's)	Water shielding, some care in surface exposure (< a few days in lab air)
January 2008	2 mBq	Moved to SNOLAB	6000 m.w.e. shielding
August 2008	400 μBq	Clean v1 chamber at SNOLAB	Glove box preparation of inner chamber (reduce Rn adsorption/implantation on surfaces)
March 2009	150 μBq	Clean v2 chamber at SNOLAB	Sandpaper assay/selection, improved purging, PTFE instead of BC-620 reflector (from Rn emanation measurements), Rn diffusion mitigation, UP water in glove box, documented procedures; Rn Trap@SNOLAB for filling.
March 2010		Clean v3 chamber at SNOLAB	Acrylic monomer purification for coating chamber. TPB purification.

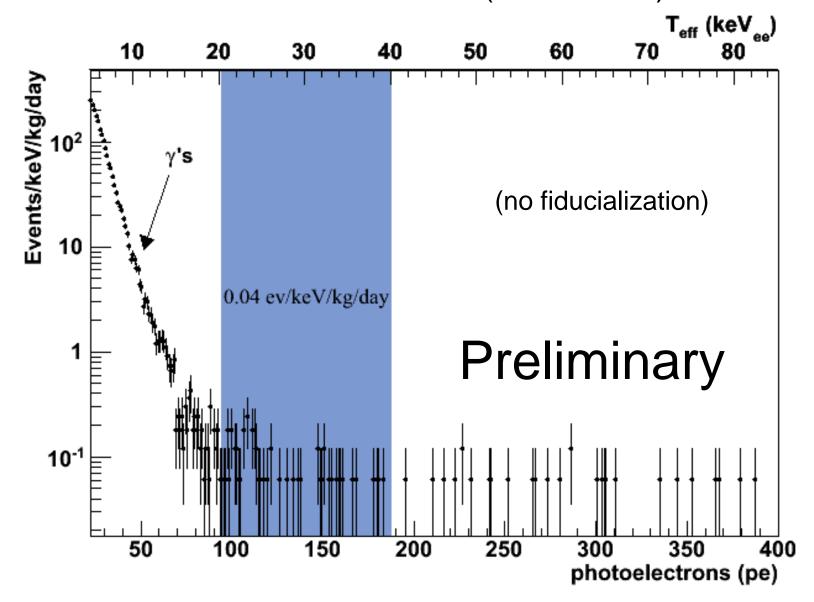
Light yield in DEAP-1 with Hamamatsu R5912 HQE PMTs

Mark Boulay, Queen's



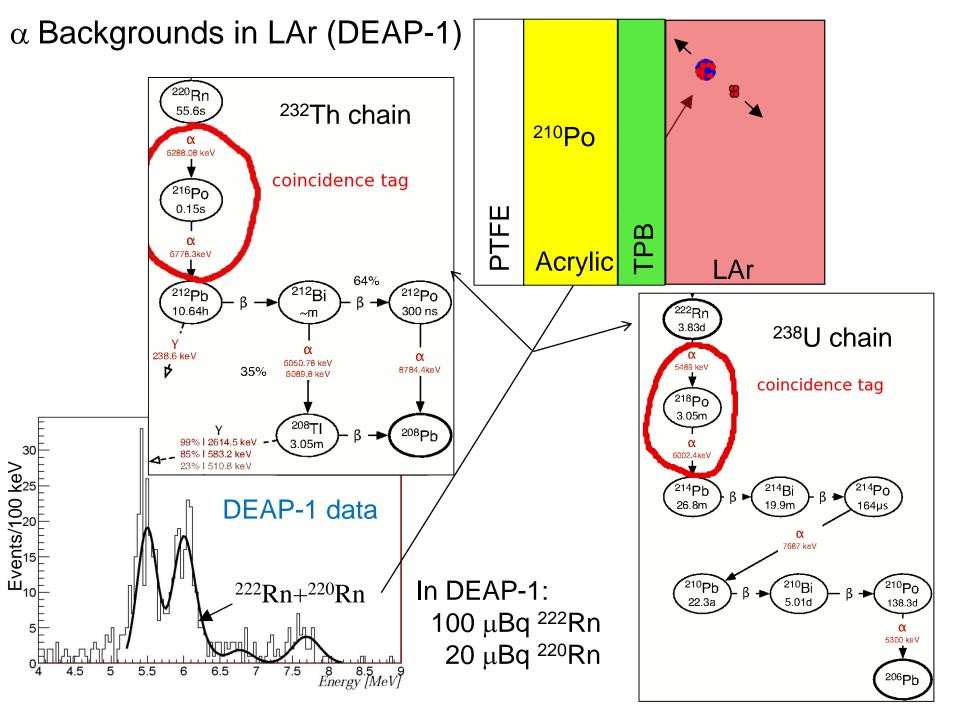
4.7 pe/keV in DEAP-1

expect higher light yield in DEAP-3600 (greater PMT coverage, 75% vs 20%)

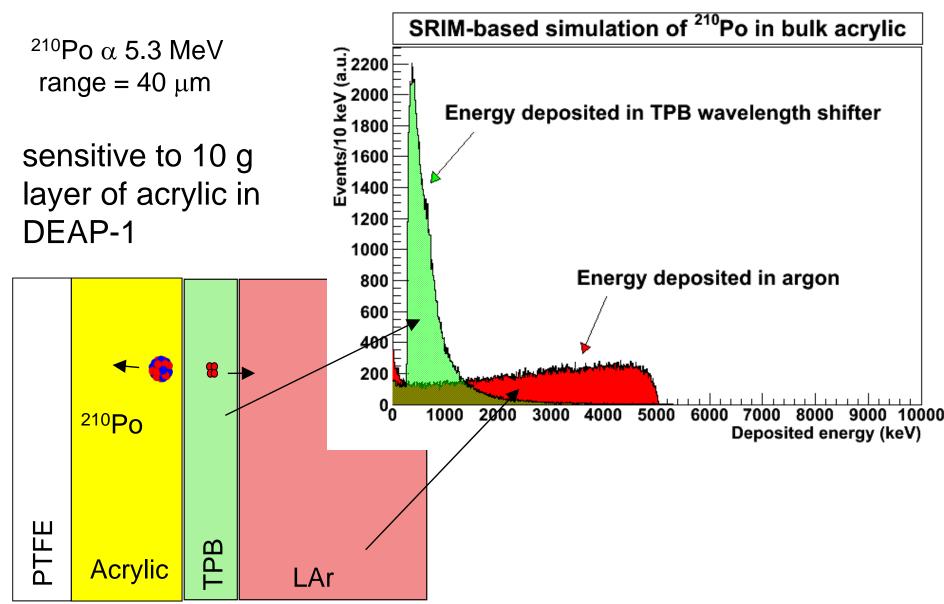

MC simulations (ratio of DEAP-3600 to DEAP-1) show > **8 pe/keV** in DEAP-3600, design goal was 6 pe/keV.

Calibration of DEAP-1 with AmBe neutron source

(preliminary –electronics and analysis being "tuned" for R5912's)


Data from DEAP-1 at SNOLAB (June 2010)

α Backgrounds in Liquid Argon



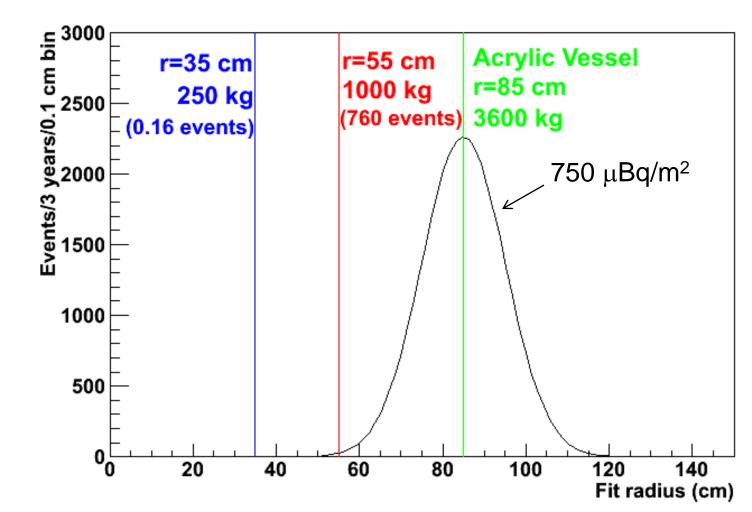
DEAP-1 and DEAP-3600 surface profile

α backgrounds in acrylic or TPB

T. Pollman (Queen's)

Mark Boulay, Queen's

Surface Backgrounds in DEAP


A "pessimistic" upper limit on the surface background rate is $< 150 \mu Bq / 0.2 m^2 (750 \mu Bq/m^2)$

This current background level would allow 250 kg background-free, sensitivity to SI-scattering of 4x10⁻⁴⁶ cm² (<0.2 events in 3 years, using 10-cm position resolution, 35 cm fiducial cut)

Several possibilities to further reduce backgrounds:

- Reduce Rn emanation (weld passivation, etching, and exposure control)
- TPB purification
- •Tags in analysis:
 - PMT hit distribution (large pulses for PMTs directly in front of alpha event)
 - α/recoil pulse shape discrimination (recent measurements of scintillation in TPB wavlength shifter show promise)

3-years of DEAP-3600 scaled to current backgrounds achieved in DEAP-1

Even current surface background rates from DEAP-1 would allow 250 kg "background-free" in DEAP-3600 (4x10⁻⁴⁶ cm²) sensitivity. Several improvements planned to further reduce backgrounds.

Mark Boulay, Queen's

SNOLAB Cube Hall (DEAP-3600 area) September 2009

DEAP-3600 schedule

Early 2010

Completed deck installation in Cube Hall, water tank components shipped UG

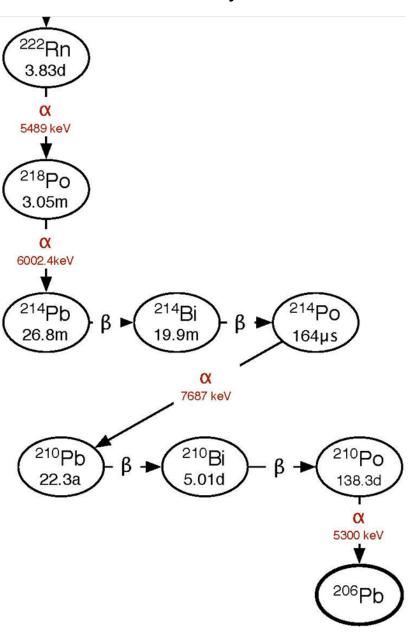
Rest of 2010

Install shield tank, water systems, electrical, infrastructure Prepare sub-system and safety reviews Prepare fabrication-ready drawings, prototyping of cryogenic systems, DAQ, 50-cm test vessel Continued background studies with DEAP-1

2011 Construct and ship AV and components to site, complete process systems, electronics, QA, detector assembly

2012 Commission and Run

Summary


- •DEAP-3600 targeting background-free exposure of 1000 kg LAr, 10⁻⁴⁶ cm² sensitivity
- •Current background levels and detector response demonstrated with DEAP-1 would allow "background-free" 250-kg search with DEAP-3600, on-going efforts for surface background reduction techniques (and PSD studies) with DEAP-1
- •Construction effort underway at SNOLAB, first running planned for 2012

END

DEAP-3600 Surface α 's/recoils budget

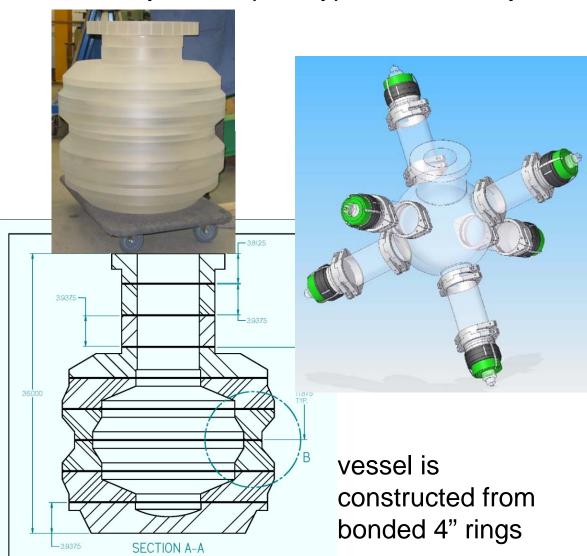
Source	Rate	Source	Events in ROI/3y
Total surface events in energy ROI	<1.6 μBq	All sources	<0.2
²²² Rn in Ar		emanation	
²²⁰ Rn in Ar		emanation or Th, Ra leaching	
²¹⁰ Pb in WLS		Rn diffusion into WLS	
²¹⁰ Pb on WLS		leaching in ²¹⁰ Pb from plumbing, surfaces	
²¹⁰ Pb in acrylic		Rn diffusion into beads	
U in WLS		Impurity	
U in acrylic		Impurity	
Th in WLS		Impurity	
Th in acrylic		Impurity	
Particulates (mine dust)		Impurity, Rn emanation load	


DEAP-3600 Acrylic Vessel Resurfacer (Florian, Queen's Engineer)

Mechanical resurfacer removes surface Contamination in inert environment

Debris is flushed and removed with ultrapure water

Resurfacer components are low Rn emanation materials and cleaned of ²¹⁰Pb

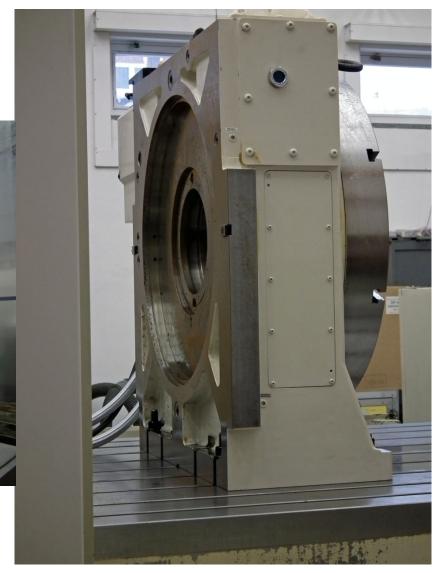


Resurfacer inserted and removed through sealed glove box

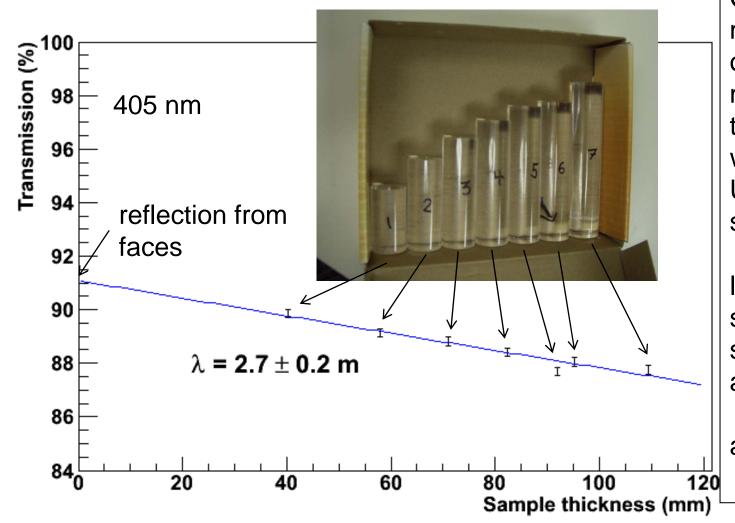
All materials that see argon need to be cleaned: low radon emanation, no ²¹⁰Pb, etc. leaching (weld passivation, etching, ...)

50-centimeter test vessel

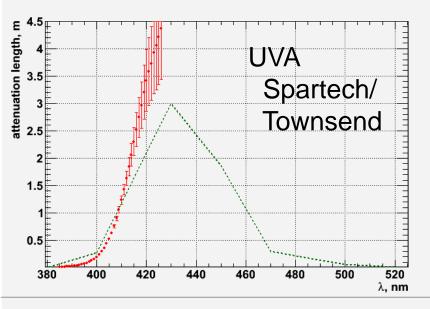
Constructing a small test acrylic vessel to qualify machining/bonding of acrylic, and prototype some sub-systems

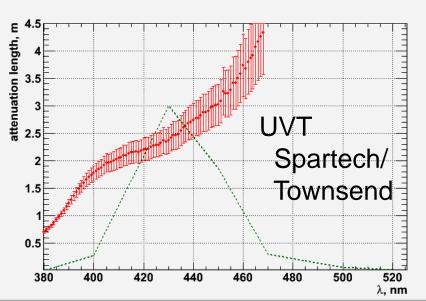

Rings after bonding at Reynolds Polymer (Colorado)

Mark Boulay, Queen's


DEAP Acrylic Vessel Machining Setup (University of Alberta)

J. Soukup, Alberta

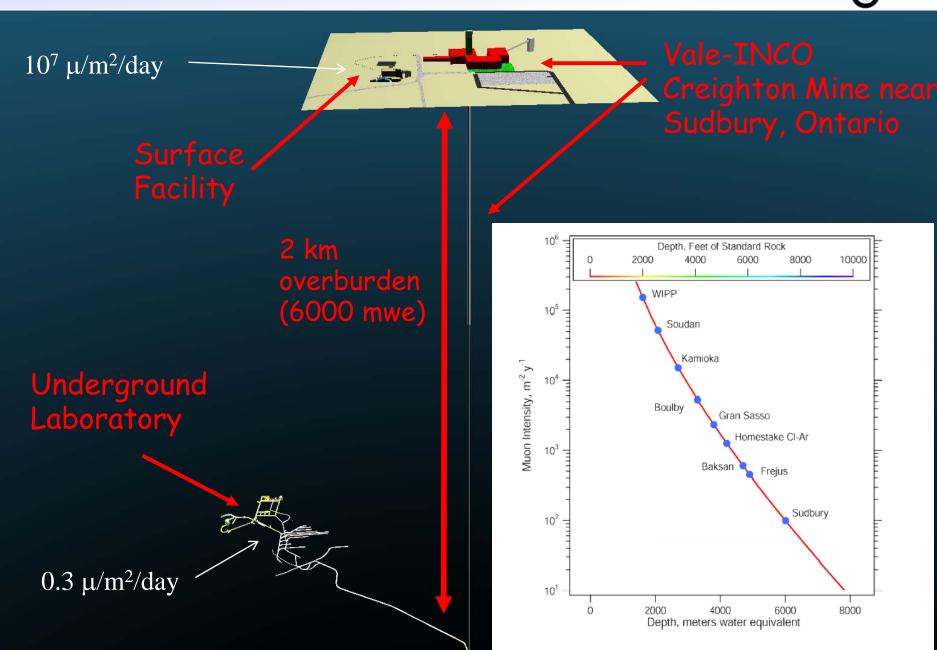

Acrylic optical attenuation lengths



Carefully machined sets of acrylic rods, measured transmission with Lambda **UV-VIS** spectrometer to fit attenuation length, for several acrylic suppliers, with and without UV absorbers in acrylic (UVA or UVT)

(Data from V. Golovko, Queen's)

Acrylic attenuation length measurements


We consistently find that acrylic with UV absorber is much better at long wavelengths (> 400 nm)

Working with
Spartech to
"tailor" the UV
absorber for
best light
transmission

Acrylic Sample	Average atten. length (m)
RPT-UVA	3.5
RPT-UVT	2.2
CS Hyde	4.1
Evonic- Rohm- UVT	4.8
Polymer Plastic UVT	2.4
Bicron- UVA	1.8
Spartech- UVA	5.2
Spartech- UVT	2.3
CS Hyde 2	>10

SNOLAB

