IDM2010

ID de Contribution: 53

Type: Talk

The General Antiparticle Spectrometer (GAPS) -Hunt for dark matter using low energy antideuterons

mardi 27 juillet 2010 17:30 (20 minutes)

The GAPS experiment is foreseen to carry out a dark matter search using low energy cosmic ray antideuterons (< 0.3GeV/n) using a novel detection approach. The theoretically predicted antideuteron flux resulting from secondary interactions of primary cosmic rays, e.g. protons, with the interstellar medium is very low. So far not a single cosmic antideuteron has been detected by any experiment but well-motivated theories beyond the standard model of particle physics, e.g. supersymmetry or universal extra dimensions, contain viable dark matter candidates which could led to a significant enhancement of the antideuteron flux due to self-annihilation of the dark matter particles. This flux contribution is believed to be especially large at small energies which leads to a high discovery potential for GAPS.

In comparison to other experiments, GAPS will be able to measure antideuterons at lower energies than the upcoming AMS-02 experiment and will partly cover complementary parameter space regions of dark matter scenarios studied by direct dark matter underground searches.

GAPS is designed to achieve its goals via a series of ultra-long duration balloon flights (bGAPS) at high altitude in Antarctica, starting in 2014. The detector itself will consist of 13 planes of Si(Li) solid state detectors and a time-of-flight system. The antideuterons will be slowed down in the Si(Li) material, replace a shell electron and form an excited exotic atom. The atom will be deexcited by characteristic x-ray transitions and will end its life by the formation of an annihilation pion star. This unique event structure will deliver a nearly background free detection possibility.

To prove the performance of the different detector components at stratospheric altitudes a prototype flight (pGAPS) will be conducted in 2011 from Taiki, Japan. This flight will also be important to understand the particle and x-ray backgrounds which might influence the final bGAPS design.

This presentation will report on the general bGAPS concept and on the status of the pGAPS instrument and flight preparations.

Auteur principal: Dr VON DOETINCHEM, Philip (UC Berkeley Space Sciences Laboratory)

Co-auteurs: Dr TAKADA, Atsushi (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency); Prof. HAILEY, Charles J. (Columbia University Astronomy and Astrophysics); Dr GAHBAUER, Florian H. (University of Latvia Atomic and Molecular Physics Laboratory); Dr FUKE, Hideyuki (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency); Dr MOGNET, Isaac (UC Los Angeles Physics and Astronomy); Dr KOGLIN, Jason E. (Columbia University Astronomy and Astrophysics); Dr ZWEERINK, Jeffrey (UC Los Angeles Physics and Astronomy); Dr MORI, Kaya (Columbia University Astronomy and Astrophysics); Prof. BANDO, Nobutaka (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency); MADDEN, Norm (Columbia University Astronomy and Astrophysics); Prof. ONG, Rene A. (UC Los Angeles Physics and Astronomy); Prof. BOGGS, Steven E. (UC Berkeley Space Sciences Laboratory); Prof. YOSHIDA, Tetsuya (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency); Mme ZHANG, Tracy (UC Los Angeles Physics and Astronomy); Dr ARAMAKI, Tsuguo (Columbia University Astronomy and Astrophysics); Dr CRAIG, William W. (Lawrence Livermore National Laboratory)

Orateur: Dr VON DOETINCHEM, Philip (UC Berkeley Space Sciences Laboratory)

Classification de Session: Parallel session : Indirect Searches 3

Classification de thématique: Dark Matter Direct Searches