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MiniCLEAN is a single phase liquid argon direct dark matter detector
Pulse shape discrimination allows separation of electronic recoils and
nuclear recoils-> more late light from electron recoils because they are
more likely to result in the longer lived state

For more information on MiniCLEAN, and the DEAP /CLEAN program,
see talks by M. Boulay, and D. McKinsey
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Neutron Backgrounds

Nuclear recoils from neutrons are a
background for any direct DM search

Shielding can protect from cosmogenic
neutrons and those from the surrounding
material.

We are left with neutrons from within
the detector itself

8 10
Energy (MeV)

Greatest source of worrisome neutrons for MiniCLEAN are those made in the
borosilicate glass of our PMTs.

The **U and **Th alpha chains are followed in the PMT glass composition to
generate the neutron spectrum.

Spectrum from neutronyield.usd.edu
Following the methods of: NIM A 606(2009)651660 (arXiv:0812.4307)
and doi:10.1016/j.astropartphys.2010.04.003 (arXiv:0912.0211)
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Neutron Scattering

Recoil

Elastic Scattering: background to a WIMP event
Maximum energy transfer from neutron to argon of 10%
For a 50 keVr analysis threshold, the neutron energy

threshold is .5 MeV
Recaoil
Nucleus /

Cross section will have resonances
Inelastic Scattering: for our energy region of interest, O %j ’Vlf%
primarily 1n, gamma in the final state Neutron \ \

Nucleus
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Neutron \
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Neutron

Thresholds and energy loss set by argon nuclear excited
states

O

Neutron

Neutron Capture: Cross section at thermal energies
(0.025 eV) also resonances at keV energies

Gamma rays and * Ar produced

“'Ar decays with a half life of 1.8 hrs to *'K,
producing a keV electron and 1.3 MeV gamma
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Geant4 and Neutrons

Look at Geant4's neutron physics

- Cross-section implementation
Compare these cross sections to:
- ENDF/B-VII
- Measurements
- Other evaluated databases/simulation packages

Look individually at Elastic, Inelastic and Capture
Processes

Impact of these processes from the view of a dark matter
search
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Neutron HP

» Uses energy-dependent cross section and final state data
from G4ANDL3.13 (G4NDL) for Elastic, Inelastic, Capture
and Fission (not applicable in Argon)

— Elastic scatters have cross section information, and final
state distribution's Legendre polynomials

- Inelastic scatters are more complicated

e Total inelastic cross section

» Final state cross sections (1n, alpha, proton, 2n,
etc.)

» Cross sections for the different argon nuclear
excited states, isotropic emission

» De-excitation gammas

- Captures have cross section information
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— Cross Sections for “’Ar same back to G4ANDL3.9

— Cross sections come fromm ENDF /B-VI resonances

« Able to use natural abundances or user-specified

» Are there cross sections for your isotopes in G4ANDL?

— They aren't for Neon!
- Main argon isotopes are all present
« “Ar (.996003), *°Ar(0.000632),
*Ar (0.003365)
» Geant4 Hadronic Physics group adding

features, fixing reported bugs
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Neutron Elastic Cross Section on ‘:gAr Neutron Elastic Cross Section on ; Ar
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Monoenergetic neutrons shot into liquid natural argon, Inelastic processes turned off
Input cross sections are reproduced.
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ENDF n-Ard0 Elastic Xs

G4NDL3.13 n-Ar40 Elastic Xs

ron energy

ENDEF/B-VII provides cross sections, more resonances than G4ANDL

Differences of ~2 at energies < 45 keV
Slight differences at the resonant dip at ~50 keV
Above 1 MeV, 30% effects at peak and on the tail

ENDF/B-VIl is in agreement with other datasets: ROSFOND (Russian),

JENDLS3.3 (Japanese), JENDLA4.0, JEFF3.1 (European)
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Neutron Total Cross Section on JoAr
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imulation

Measurements and simulations have really
been done with natural argon, at low
energies *°Ar becomes important!

Cross Sectioﬂ [barns],
=]

Recall: “Ar (.996003), *Ar (0.003365)

0 0°
Neutron energy [eJ]

Measurements from Winters et al PRC, 43, 492, 1991
From 7 keV to 50 MeV
ENDF normalized to their data, which is on the NNDC website
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Cross Section (b)

Cross Section (b)

Dip in Elastic Cross Section

Interference between s-wave and hard-sphere scattering

gives deep, broad resonant dips in the cross section
Exploited elsewhere to make monoenergetic neutron beams

21-Sc-45(n,elastic) ENDF /B-V11.0

2 4 keV in SC
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26-Fe-56&(n,clastic) ENDF /B-VI1.0
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Neutron Elastic Cross Section on ':gAr
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Some uncertainty in depth

and position, but

Said Mughabghab of BNL,

editor of the Atlas of
Neutron Resonances,
communicates that it is:
between 46 and 51 keV
a minima of 4 mb
at this energy, an

equivalent mean free path
of 118 m
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Spherical Model, just used for neutron physics studies

60 cm radius of LAr

Neutrons initialized in sphere of glass just outside the argon
and are emitted isotropically
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With a mean time of 7 ns between
subsequent scatters in argon
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~90% of all neutron scatters in argon are elastic
Mean of ~2.5 elastic scatters per neutron simulated
(and that includes all neutrons that never scatter in
the argon because they never entered it)

Mean distance between neutron-Argon
scatters is 24 cm 0

Fraction of Subsequnt Argon scatter pairs

0 100 200 300 400 500 600 700 800 900 1000
Distance between subsequent scatters in Argon (mm)
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Gastler et. al. arXiv:1004.0373

Simulation

1 MeV incident neutrons

Neutrons may only lose up to 10%
of their energy to the argon nuclei,
Average much less: 3.1% at 1 MeV
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Selected Neutron Inelastic Cross Sections on '::.AI' Selected Neutron Inelastic Cross Sections on '::AI'
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Total Inelastic Cross Section is reproduced But values are 25% lower than ENDF/B-VII

Fewer independent excited states in G4ANDL, missing 1 alpha final state which has a

threshhold of 4 MeV, but is an order of magnitude smaller in cross section
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Inelastic Gammas

Peculiar energies of gammas from first excited state:
Not monoenergetic at 1.46 MeV, as expected
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Gamma energies produced
by 3 MeV neutrons
inelastically scattering

in liquid argon: first 4
excited states are accessible

Large numbers of keV gammas, seem to be unphysical
Although we have also considered them to be from electron
Capture: right energy scale, not the right values
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Simulation

Ratio of Energy Loss

2000 4000 6000 8000 10000 12000
Kinetic Energy of Neutron Undergoing Inelastic (keV)

C. Zhang

My colleague Chao Zhang has submitted a
bug report on this issue:

G4 bug report #1054
http:/ /bugzilla-geant4.kek.jp / show_bug.cgi?id=1054

Neutrons starting with 4-7 MeV
are likely to inelastically scatter
in the liquid argon

Simulations with a PMT Alpha-N neutron
spectrum in a simplified, spherical MiniCLEAN
geometry

Clear lines when excited states are accessed
Broad when accessing the continuum states

But, energy non-conservation!
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Summary

There are small cross section differences between G4NDL and
ENDE/B-VII and a few unexpected features to neutron-Argon
interactions in Geant4.

Although fairly small effects, these introduce uncertainties in the
neutron simulations in Geant4 that may affect numbers of expected
backgrounds.

Important features of neutron interactions in argon

— Inelastic processes are important for neutron energy loss
- Neutrons will most likely scatter multiple times
elastically in the detector
— 40Ar has a substantial dip in the elastic cross section
at ~50 keV, where neutrons have a mean free path of 118 m

Geant4 neutron physics should be verified for every material!

Kimberly J. Palladino IDM July 30, 2010
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PMT Neutrons

U238 Th232 http:/ /neutronyield.usd.edu
Decay in secular equilibrium, follow 8 and 6 alphas
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TALYS

Comparison of elastic cross section for neutrons in Ar target

Cross Section (mb)

“*Ar Elastic (G4NDL3.13)
“*Ar Elastic (Talys1.2)
“*Ar Elastic (G4NDL3.13)
“*Ar Elastic (Talys1.2)
“Ar Elastic (G4NDL3.13)
““Ar Elastic {Talys1.2)

-3

10 107 10" 1 10

Neutron Energy (MeV)

C. Zhang
TALYS has no resonances input
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ENDF/B-VII AR-36
Principal cross sections
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ENDF and G4NDL values are in agreement,
Can't see the other line!
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ENDF/B-VII AR-38
Principal cross sections
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ENDF and G4NDL values are in agreement,
Can't see the other line!
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