Propagation of cosmic rays

Richard Taillet

Université de Savoie & LAPTH (Annecy-le-Vieux, France)

& D. Maurin, P. Salati, F. Donato, J. Lavalle, T. Delahaye, A. Putze, L. Derome, N. Fornengo...

Three points:

- Physics of propagation
- Indirect detection through antimatter
- Clumps/boost factors

dark matter particles can annihilate and create other particles \rightarrow indirect detection

neutral : neutrinos and gamma-rays charged : electrons, positrons, protons, antiprotons

e.g.

$$\chi + \chi \to \bar{p} + X$$

To be able to perform indirect detection, one must be able to tell the signal from the background.

$$p + p \to \bar{p} + X$$

Antimatter particles have a lower background and should be easier to detect in cosmic rays.

In the context of Dark Matter indirect detection, three main uncertainties :

- existence/properties of the dark matter particle?
- distribution in space and in velocity space ?
- propagation of the annihilation products

Propagation is important for two reasons :

- to predict the signal (antiprotons, positrons from DM annihilation)
- to understand the background (primaries + secondaries from spallation)

The two studies must be done in a consistent way !

- same propagation model with same physical effects
- same parameters

The two studies must be done in a consistent way !

- same propagation model with same physical effects
- same parameters

The two studies must be done in a consistent way !

- same propagation model with same physical effects
- same parameters

Propagation of charged particles (positrons, antiprotons) is determined by the structure of the Galactic magnetic field.

Regular component + stochastic component, probably associated with turbulence

 \rightarrow fluctuations of the magnetic field on every scale

→ energy-dependent **diffusion** : diffusion is more efficient at high energy

R ~ 20 kpc

solve a diffusion equation, taking into account:

- diffusion (diffusion coefficient ? anisotropic ? inhomogeneous ?)
- escape (boundary conditions, geometry of diffusion volume)
- spallations (creation/destruction, cross-sections, interstellar medium)
- Sources (distribution, spectra)
- energy losses
- diffusive reaccerelation
- galactic wind (convection)
- inelastic non annihilating reactions (for antiprotons)

caracteristic times

 $\overline{E_k}$ (GeV/nuc)

Different approaches to model propagation:

Leaky Box : escape time, distribution of grammages

Diffusion equation :

- numerical resolution (GALPROP, Strong & Moskalenko)
- semi-analytical resolution (USINE, Maurin et al.)

$$\frac{\partial N}{\partial t} - \vec{\nabla} \left[D\vec{\nabla}N - \vec{V_c}N \right] - \frac{\vec{\nabla} \cdot \vec{V_c}}{3} \frac{\partial}{\partial E} \left(\frac{p^2 N}{E} \right) = \frac{\partial}{\partial E} \left[-\frac{1+\beta^2}{E} K_{pp}N + \beta^2 K_{pp} \frac{\partial N}{\partial E} \right] + Q(E)$$

Note : USINE will be publicly released within a few months

Diffusion parameters Diffusion coefficient

Height of diffusive halo

Alfvèn velocity (reacc.)

Gal. wind velocity (convection)

 $D = D_0 \beta \left(\frac{\mathcal{R}}{1 \text{ GV}}\right)^c$ L V_a V_c

Diffusion parameters Diffusion coefficient

Height of diffusive halo

Alfvèn velocity (reacc.)

Gal. wind velocity (convection)

 $D = D_0 \beta \left(\frac{\mathcal{R}}{1 \text{ GV}} \right)^2$ V_a V_c

Related to the kind of magnetic turbulence : no consensus

Diffusion parameters Diffusion coefficient

Height of diffusive halo

Alfvèn velocity (reacc.)

Gal. wind velocity (convection)

 $\left(\frac{\mathcal{R}}{1 \text{ GV}}\right)$ V_a V_c

Related to the amplitude of turbulence

Diffusion parameters Diffusion coefficient

Height of diffusive halo

Alfvèn velocity (reacceleration)

Galactic wind velocity (convection)

 $rac{\mathcal{R}}{\mathrm{GV}}$

Mean grammage is determined by L/D

$$\langle x
angle \sim \Sigma rac{vL}{D}$$
 ~ 10 g cm -

$$\Sigma \sim 10^{-3} \,\mathrm{g \cdot cm^{-2}}$$

If the galactic disk was flattened, it would look like a sheet of usual paper, crossed about 10 000 times by every cosmic ray nucleus

Mean grammage is determined by L/D

$$\langle x \rangle \sim \Sigma \frac{vL}{D} \sim 10 ~\rm{g~cm^{-2}}$$

$$\Sigma \sim 10^{-3} \,\mathrm{g \cdot cm^{-2}}$$

General facts about propagation

- The range of propagation is limited by escape, spallation and decay
- Propagation of nuclei and antiprotons can be studied at a given energy per nucleon, as a first approximation
- Propagation of positrons is dominated by energy losses

The propagation parameters can be determined (or at least constrained) by the study of cosmic ray nuclei:

For a given set of parameters,

- compute B/C
- compare to data
- keep if good

Astrophysical uncertainties (assuming the model is correct):

- distribution of sources
- distribution of interstellar matter
- energy losses (Lavalle & Delahaye 2010)
- nuclear cross-sections

Results from a systematic exploration of the parameter space, using B/C

Maurin et al. 2001

Results from a Monte Carlo Markov Chain analysis (MCMC)

Putze et al. 2010

Antiprotons from spallation

Results for secondary antiprotons (background)

Uncertainty on the parameterizations of nuclear cross sections (but proton flux rather well measured)

Antiprotons from dark matter

Examples of results for antiprotons from exotic sources

Kaluza-Klein, m = 50 GeV/c^2

neutralino m = 300 GeV/c^2

Donato et al. 2004

Antiprotons from dark matter

Very sensitive to L, for two reasons: if L si higher,

- Confinement is more efficient
- More sources in the diffusive halo

Positrons from spallations

Created through decay of pions produced in p-p collisions

Propagation dominated by energy losses (synchrotron & inverse Compton upon CMB/starlight)

$$\frac{dE}{dt} = -\frac{1}{\tau_{\text{loss}}} \times \frac{E^2}{E_0} \qquad \hat{\tau}_{\text{loss}} \sim 10^{16} \,\text{s}$$
$$\hat{\tau} \equiv \tau_{\text{loss}} \times \frac{E^{\delta - 1}}{1 - \delta} \qquad \ell \sim \sqrt{D_0 \hat{\tau}}$$

Positrons from spallations

Example of results for secondary positrons

positrons

[make nasty remark here ... 😊]

Adriani et al., Nature 458 (2009) 607

Antimatter from dark matter

Results for positrons from DM annihilation

Antimatter from dark matter

clumpiness

The Dark Matter distribution must be clumpy

$$\langle \rho^2 \rangle > \langle \rho \rangle^2$$

 \rightarrow enhancement of the indirect detection signal (boost factor)

via lactea simulation of a galactic halo

Antimatter from dark matter

When the diffusion range is short, we are very sensitive to the graininess of the source distribution

 \rightarrow larger variance of the predicted flux

This shows:

- at low energy for antiprotons
- at high energy for positrons

Lavalle, Yuhan, Maurin & Bi, A&A 479 (2008) 427

Conclusions

- Signal and background must be studied within the same framework
- There is no « standard model » for propagation parameters
- Clumpiness does not simply translates into a boost factor