Muon Track Reconstruction

D. Lenis, NCSR Demokritos, Athens

Contents

- Reconstruction Software
 - Code Organization
 - Fitting Algorithms
 - Pattern Recognition Techniques
 - Performance of the reconstruction
- KM3 Detector Studies

Code Organization: Software Principles

- Open Source from A to Z
- Heavy reliance on well trusted tools (Geant4, ROOT)
- OO design
- Modularity
 - Common Data Classes (Track, Hit, RecTrack etc) used throughout the project
 - Common Geometry Classes (Detector description)
- Basic characteristic of all Data & Geometry classes: REDUNDANCY. Geometry description classes MUST be versatile enough to be used by
 - All possible geometric configurations (Strings, floors, single or multi PMT),
 - All Simulations
 - All Reco strategies.
- One ID number is not enough for all of these!
- Develop now, Optimize later
- Proposal for KM3Tray geometry classes.

Reconstruction Software

*****Fitting Algorithm

Using MINUIT implements a χ^2 minimization technique to estimate the parameters of the track and their errors. The χ^2 estimator is defined as

$$\chi^{2} = \sum_{i=1}^{N_{hit}} \left(\frac{t_{i}^{exp} - t_{i}^{data}}{\sigma_{i}^{data}} \right)$$

t_{i^{data} : time measured,}

Nhit : number of the hits used for the track reconstruction,

t_i^{exp} (θ,φ,V_x,V_ψ,V_z) : expected arrival time of the ith hit, assuming that the pulse is the PMT response to the Cherenkov light produced by a muon track with zenith angle θ, azimuthal angle φ and pseudovertex coordinates {V_x,V_ψ,V_z},
σ_i^{data} : resolution in measuring the arrival time of the ith hit.

Pattern Recognition on Tower Geometries

- Clusterize signals per floor. Form clusters of 2 or more signals in time per floor.
 - Find the maximum signal of each tower.
- Within a single tower combine the maximum charge cluster with clusters of signals of the two neighboring floors.
 - Only Consider Combinations with more than 5 signals
 - Form track segments in that tower by fitting the resulted combinations of signals.
- Only successfully fitted track segments are passed to the next stage of the Pattern Recognition.

Pattern Recognition on Tower Geometries

- * Combine track segments of neighboring towers and form new track segments by fitting the combination of their signals.
 - Only successfully fitted track segments are passed to the next stage of the pattern recognition, together with the track segments of the previous step whose signals were not used.
- On the track segments of the previous step, associate signals that were not used on the track segment under consideration.
 - Fit the resulted combination of signal producing track candidates.
- * At the end the program output both:
 - track candidates, and
 - those track segments that do not have signals already associated to
 - a track.

Pattern Recognition on String Geometries

* Find "Large" OMs with many Hits (Assume multi-hit OMs to be real)

- Eliminate 40 K (coincidence window $\Delta T \sim OM$ dimensions as per XML Description file)
- \star Loop over neighbouring OMs (or OMClusters) and find real hits there
 - (Causality criterion: $\Delta T \sim \Delta R$, $\Delta R = OM$ Distance)
- * Create Track segments by combining these local bundles of hits
- Recognize among them track segments that belong to the same track and combine them.
- * Output reconstructed tracks (with their hits).

Reconstruction Results: 1 NESTOR Tower Geometry

Monoenergetic down-going muons of 100 GeV, 500 GeV, 1 TeV and 10 TeV (10000 events each energy) uniformly distributed between 90° and 180° in θ and between 0° and 360° in ϕ and reconstructed them. The successfully fitted track candidates with probability(χ^2) greater than 1% are considered as tracks.

Reconstruction Results: km³ Multi-pmt

Reconstruction Efficiency and Misreconstructed Tracks

***** Reconstruction efficiency:

ratio of the number of events with one reconstructed track with probability(χ^2) > 1% to the number of events that have more than

- 5 signals (tower)
- 6 signals on 2 or more strings, produced by non-background/noise photons.

Misreconstructed tracks:

ratio of the events which have θ -resolution worse than 5° to the number of events with one reconstructed track with probability(χ^2) > 1%.

Reconstruction Efficiency and Misreconstructed Tracks (Nestor Tower)

Energy	Percentage of evts with > 5 Hits (%)	Reconstruction efficiency (%)	$\begin{array}{c} \textbf{Misreconstructed} \\ \Delta\theta > 5^{\circ} \\ (\%) \end{array}$
100 GeV	20	77	34
500 GeV	31	80	27
1 TeV	31	78	27
10TeV	49	72	29

Reconstruction Efficiency and Misreconstructed Tracks (km³ multi pmt)

Energy	Percentage of evts with > 6 Hits > 1 string	Reconstruction efficiency (%)	$\begin{array}{c} \text{Misreconstructed} \\ \Delta \theta > 5^{\circ} \\ (\%) \end{array}$	up/down misses (%)
100 GeV	23	25	26	5
500 GeV	59	52	9	2
1 TeV	61	56	7	1
10TeV	69	69	6	1
100 TeV	76	75	3	1

Effective Area (Nestor Tower)

Effective Area (Cabled multi pmt)

θ,φ Resolutions(Nestor Tower)

θ,φ Resolutions (*Nestor Tower*)

Energy	σ(θ) (deg)	# of events beyond 3σ (%)	σ(φ) (deg)	# of events beyond 3σ (%)	median (deg)
100 GeV	1.3	34	3.5	30	1.4
500 GeV	1.0	31	1.9	28	1.0
1 TeV	1.0	30	1.8	27	1.0
10TeV	0.8	35	1.7	29	0.9

θ,φ Resolutions (cabled multi pmt)

θ,φ Resolutions (cabled multi pmt)

Energy	σ(θ) (deg)	# of events beyond 3σ (%)	σ(φ) (deg)	# of events beyond 3σ (%)	median (deg)
100 GeV	1.1	31	8.7	9	4.1
500 GeV	0.6	16	7.0	7	0.6
1 TeV	0.6	15	1.6	28	0.4
10TeV	0.6	12	1.2	27	0.2
100 TeV	0.5	5	1.0	15	0.1

Reconstruction Results

θ, ϕ angle pulls

(phi_r - phi_c)/error

To Do List

- KM3Tray
- Go Public
- Use SIRENE (fast!)
- Test and validate the reconstruction algorithms on multimuon events.
- Study in detail the effect of the sea depth on the background rejection
- Study the performance of tower like geometries

What is not right with Chameleon?

• It **can** compare different geometries, but...

It cannot perform comparisons with other reconstructions

We have (for the moment) at least :

- 4 Geant4 sims
- 1 sirene
- 3 Recos

AND THEY CANNOT COMMUNICATE!

Need for:

1. A common data set for input in Simulation

2. A common data set for input in Reco

3. A way to compare results