The Physics of Glueballs

Vincent Mathieu

Université de Mons, Belgique

Strasbourg, January 2009

OUTLINE

- Introduction
- 2 Lattice QCD
- 3 ADS/QCD
- **1** QCD SPECTRAL SUM RULES
- **6** GLUON MASS
- **6** Two-gluon glueballs C = +
- Three-gluon glueballs C = -
- 8 HELICITY FORMALISM FOR TRANSVERSE GLUONS
- ONCLUSION
- References

References

V. Mathieu, N. Kochelev, V. Vento "The Physics of Glueballs" invited review for Int. J. Mod. Phys. E arXiv:0810.4453 [hep-ph]

V. Mathieu, F. Buisseret and C. Semay "Gluons in Glueballs: Spin or Helicity?" Phys. Rev. D 77, 114022 (2008), [arXiv:0802.0088 [hep-ph]]

V. Mathieu, C. Semay and B. Silvestre-Brac "Semirelativistic Potential Model for Three-gluon Glueballs." Phys. Rev. D77 094009 (2008), [arXiv:0803.0815 [hep-ph]]

N. Boulanger, F. Buisseret, V. Mathieu, C. Semay "Constituent Gluon Interpretation of Glueballs and Gluelumps." arXiv:0806.3174 [hep-ph] accepted for publication in Eur. Phys. Jour. A

Introduction - QCD

QCD = gauge theory with the color group SU(3)

$$\mathcal{L}_{QCD} = -\frac{1}{4} \text{Tr} \, G_{\mu\nu} G^{\nu\mu} + \sum_{\mu} \bar{q} (\gamma^{\mu} D_{\mu} - m) q$$

$$G_{\mu\nu} = \partial_{\mu} A_{\mu} - \partial_{\nu} A_{\mu} - ig [A_{\mu}, A_{\nu}]$$

Quark = fundamental representation 3

Gluon = Adjoint representation 8

Observable particles = color singlet 1

Mesons: $\mathbf{3} \otimes \mathbf{\bar{3}} = \mathbf{1} \oplus \mathbf{8}$

Baryons: $3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10$

Glueballs: $8 \otimes 8 = (1 \oplus 8 \oplus 27) \oplus (8 \oplus 10 \oplus \overline{10})$

 $\mathbf{8} \otimes \cdots \otimes \mathbf{8} = \mathbf{1} \oplus \mathbf{8} \oplus \ldots$

Colored gluons \rightarrow color singlet with only gluons

Introduction - Glueballs

Prediction of the QCD

Production in gluon rich processes (OZI forbidden,...)

Closely linked to the Pomeron:

$$J = 0.25M^2 + 1.08$$

Mixing between glueball 0⁺⁺ and light mesons

Candidates:

 $f_0(1370)$

 $f_0(1500)$

 $f_0(1710)$

One scalar glueball between those states [Klempt, Phys. Rep. 454].

Physical States

Pure states: $|gg\rangle$, $|n\bar{n}\rangle$, $|s\bar{s}\rangle$

$$|G\rangle = |gg\rangle + \frac{\langle n\bar{n}|gg\rangle}{M_{gg} - M_{n\bar{n}}} |n\bar{n}\rangle + \frac{\langle s\bar{s}|gg\rangle}{M_{gg} - M_{s\bar{s}}} |s\bar{s}\rangle$$

Analysis of

Production:

$$J/\psi \to \gamma f_0, \omega f_0, \phi f_0$$

Decay:
$$f_0 \to \pi\pi, K\bar{K}, \eta\eta$$

Two mixing schemes

Cheng et al [PRD74, 094005 (2006)]

 $f_0(1370)$ $f_0(1500)$ $f_0(1710)$

$$f_0(1500)$$

$$f_0(1710)$$

Close and Kirk [PLB**483**, 345 (2000)]

 $f_0(1370)$ $f_0(1500)$

 $u\bar{u} + d\bar{d}$

$$f_0(1710)$$

 $\blacksquare gg$

 $M_{n\bar{n}} < M_{s\bar{s}} < M_{aa}$

 $M_{n\bar{n}} < M_{aa} < M_{s\bar{s}}$

LATTICE QCD

Investigation of the glueball spectrum (pure gluonic operators) on a lattice by Morningstar and Peardon [Phys. Rev. D60, 034509 (1999)] Identification of 15 glueballs below 4 GeV

$$M(0^{++}) = 1.730 \pm 0.130 \text{ GeV}$$

 $M(0^{-+}) = 2.590 \pm 0.170 \text{ GeV}$
 $M(2^{++}) = 2.400 \pm 0.145 \text{ GeV}$

Lattice studies with $n_f = 2$ exist. The lightest scalar would be sensitive to the inclusion of sea quarks but no definitive conclusion.

ADS/QCD

AdS/CFT correspondance:

Correspondance between conformal theories and string theories in AdS spacetime QCD not conformal \rightarrow breaking conformal invariance somehow

Introduction of a black hole in AdS to break conformal invariance

Parameter adjusted on 2⁺⁺

Same hierarchy but some states are missing (spin 3,...)

[R. C. Brower et al., Nucl. Phys. B587, 249 (2000)]

QCD SPECTRAL SUM RULES

Gluonic currents:
$$J_S(x) = \alpha_s G^a_{\mu\nu}(x) G^a_{\mu\nu}(x)$$
 $J_P(x) = \alpha_s G^a_{\mu\nu}(x) \widetilde{G}^a_{\mu\nu}(x)$

$$\Pi(Q^{2}) = i \int d^{4}x \ e^{iq \cdot x} \langle 0|TJ_{G}(x)J_{G}(0)|0\rangle = \frac{1}{\pi} \int_{0}^{\infty} \frac{\text{Im}\Pi(s)}{s + Q^{2}} ds$$

Theoretical side (OPE):

$$J_G(x)J_G(0) = C_{(a)+(b)+(e)}\mathbf{1} + C_{(c)}G^a_{\mu\nu}G^{\mu\nu}_a + C_{(d)}f_{abc}G^a_{\alpha\beta}G^b_{\beta\gamma}G^b_{\gamma\alpha} + \cdots$$

Confinement parameterized with condensates $\langle 0|\alpha_s G^a_{\mu\nu}G^{\mu\nu}_a|0\rangle,\ldots$

Phenomenological side:

$$\operatorname{Im}\Pi(s) = \sum_{i} \pi f_{G_i}^2 m_{G_i}^4 \delta(s - m_{G_i}^2) + \pi \theta(s - s_0) \operatorname{Im}\Pi(s)^{\operatorname{Cont}}$$

Sum Rules → Constituent models

Sum rules calculation by Forkel [Phys. Rev. D71, 054008 (2005)]

$$M(0^{++}) = 1.25 \pm 0.20 \text{ GeV}$$
 $M(0^{-+}) = 2.20 \pm 0.20 \text{ GeV}$ (1)

Two gluons in interaction

Two gluons $\rightarrow C = +$

000000 0++

Three gluons $\rightarrow C = -$

GLUON MASS

Gluons massless in the Lagrangian Non-perturbative effects \rightarrow dynamical mass

Aguilar and Papavassiliou [Eur. Phys. J. A35,189 (2008)]

$$m^{2}(q^{2}) = m_{0}^{2} \left[\frac{\ln \left(\frac{q^{2} + \rho m_{0}^{2}}{\Lambda^{2}} \right)}{\ln \left(\frac{\rho m_{0}^{2}}{\Lambda^{2}} \right)} \right]^{\gamma}$$

Gluons \sim heavy quarks

Gluonium models for the low-lying glueballs with Spinless Salpeter Hamiltonian

$$H_{gg} = 2\sqrt{\boldsymbol{p}^2 + m^2} + V(r)$$

bare mass m=0 and effective mass $\mu=\langle\Psi|\sqrt{p^2}|\Psi\rangle$ state dependent (Simonov 1994) Gluons spin-1 particles with the usual rules of spin coupling

Two-gluon glueballs C = +

Brau and Semay [Phys. Rev. D70, 014017 (2004)]

Two-gluon glueballs $\rightarrow C = +$ and $P = (-1)^L$ J = L + S with S = 0, 1, 2.

$$H^0 = 2\sqrt{\boldsymbol{p}^2} + \frac{9}{4}\sigma r - 3\frac{\alpha_s}{r}$$

Cornell potential does not lift the degeneracy between states with different S Corrections of order $\mathcal{O}(1/\mu^2)$, with

$$\mu = \langle \Psi | \sqrt{{\pmb p}^2} | \Psi \rangle$$

Structures coming from the OGE

$$V_{\text{oge}} = \lambda \left[\left(\frac{1}{4} + \frac{1}{3} \mathbf{S}^2 \right) U(r) - \frac{\pi}{\mu^2} \delta(\mathbf{r}) \left(\frac{5}{2} \mathbf{S}^2 - 4 \right) \right]$$
$$\frac{3}{2\mu^2} \frac{U'(r)}{r} \mathbf{L} \cdot \mathbf{S} - \frac{1}{6\mu^2} \left(\frac{U'(r)}{r} - U''(r) \right) T$$

with $\lambda = -3\alpha_S$ and $U(r) = \exp(-\mu r)/r$.

Numerical Procedure

Eigenvalue problem \rightarrow decomposition in a basis

$$H|\psi\rangle = E|\psi\rangle \quad |\psi\rangle = \sum_{i} \alpha_{i} |\phi^{i}\rangle$$

Matrix elements: $\mathcal{H}^{ij} = \langle \phi^j | H | \phi^i \rangle = \mathcal{T}^{ij} + \mathcal{V}^{ij}, \quad \mathcal{N}^{ij} = \langle \phi^j | \phi^i \rangle = \delta^{ij}$

2-body problem \rightarrow one radial variable r

$$H = 2\sqrt{p^2} + \frac{9}{4}\sigma r - 3\frac{\alpha_s}{r}$$

Lagrange mesh (x_i) based on Laguerre polynomials

Not a variational procedure! Matrix elements evaluated on the mesh (x_i)

$$\mathcal{V}^{ij} = \langle \phi^j | V | \phi^i \rangle = V(x_i) \delta^{ij}$$

 $\langle \phi^j | \mathbf{p}^2 | \phi^i \rangle$ analytical \rightarrow computation of $\langle \phi^j | \sqrt{\mathbf{p}^2 + m^2} | \phi^i \rangle$

Applications to nuclear physics

D. Baye and P.-H. Heenen, J. Phys. A19, 2041 (1986)

C. Semay, D. Baye, M. Hesse and B. Silvestre-Brac, Phys. Rev. E64, 016703 (2001)

Two-gluon glueballs C = +

Smearing of the attractive $\delta^3(r)$ by a gluon size

$$\rho(\boldsymbol{r},\gamma) = \exp(-r/\gamma)/r$$

Replacement of potentials by convolutions with the size function

$$V(\mathbf{r}) \to \widetilde{V}(\mathbf{r}, \gamma) = \int V(\mathbf{r} + \mathbf{r}^*) \rho(\mathbf{r}^*, \gamma) d\mathbf{r}^*$$

Parameters

$$\sigma = 0.21 \text{ GeV}^2$$
 $\alpha_s = 0.50$ $\gamma = 0.5 \text{ GeV}^{-1}$

Good agreement with lattice QCD Gluons = spin $1 \rightarrow$ spurious J = 1 states and

indetermination of states For instance, 0^{++} can be (L, S) = (0, 0) or (2, 2)

J^{PC}	(L,S)		
0_{++}	(0,0)	(2,2)	$(0,0)^*$
0_{-+}	(1,1)	$(1,1)^*$	
2^{++}	(0,2)	(2,0)	(2,2)
2^{-+}	(1,1)	$(1,1)^*$	
3^{++}	(2,2)		
4^{++}	(2,2)		
1++	(2,2)		
1-+	(1.1)	$(1\ 1)^*$	

Three-gluon glueballs C = -

THE MODEL

Extension of the model to three-gluon systems

$$H = \sum_{i=1}^{3} \sqrt{p_i^2} + \frac{9}{4} \sigma \sum_{i=1}^{3} |r_i - R_{cm}| + V_{OGE}$$

Same parameters $(\sigma, \alpha_S, \gamma)$ as for two-gluon glueballs

$$V_{\text{OGE}} = -\frac{3}{2} \alpha_{S} \sum_{i < j=1}^{3} \left[\left(\frac{1}{4} + \frac{1}{3} S_{ij}^{2} \right) U(r_{ij}) - \frac{\pi}{\mu^{2}} \delta(r_{ij}) \left(\beta + \frac{5}{6} S_{ij}^{2} \right) \right]$$
$$-\frac{9 \alpha_{S}}{4\mu^{2}} \sum_{i < j=1}^{3} \mathbf{L}_{ij} \cdot \mathbf{S}_{ij} \frac{1}{r_{ij}} \frac{d}{dr_{ij}} U(r_{ij}) \quad \text{with } U(r) = \frac{e^{-\mu r}}{r}$$

We find the eigenvalue of this operator thanks to a Gaussian basis

Three-gluon glueballs C = -

Gaussian functions \rightarrow analytical matrix elements

$$|\phi_{i}(\boldsymbol{x},\boldsymbol{y},A,u)\rangle = \exp\left[-\tilde{\boldsymbol{z}}A_{i}\boldsymbol{z}\right]\mathcal{Y}_{LM}(\tilde{u}_{i}\boldsymbol{z}) = \exp\left[-\tilde{\boldsymbol{z}}A_{i}\boldsymbol{z}\right]|\tilde{u}\boldsymbol{z}|^{L}Y_{LM}(\tilde{u}_{i}\boldsymbol{z})$$

$$\langle \phi_i | V(|\alpha \boldsymbol{x} + \beta \boldsymbol{y}|) | \phi_j \rangle \to \int_0^\infty V(r) e^{-kr^2} dr.$$

Three-body systems, $\tilde{z} = (x \ y) \rightarrow \text{five variational parameters}$ Fourier transform is also a Gaussian^a:

$$\mathcal{F}[|\phi_i(\boldsymbol{x},\boldsymbol{y},A,u)\rangle] \propto \phi_i(\boldsymbol{p},\boldsymbol{q},A^{-1}/4,A^{-1}u)\rangle$$

$$\rightarrow$$
 Computation of $\langle \phi_i | \sqrt{\boldsymbol{p}^2 + m^2} | \phi_j \rangle$

Basis infinite dimensional but we fix the number of Gaussian

 \rightarrow the energy is an upper bound of the real energy

Variational problem realized with MINUIT :

$$\frac{\partial E}{\partial A_i} = \frac{\partial E}{\partial u_i} = 0 \quad \forall i$$

^aSilvestre-Brac and V.M., PRE**76**, 046702 (2007); PRE**77**, 036706 (2008)

 $A_i = \begin{pmatrix} a_i & c_i \\ c_i & b_i \end{pmatrix}$ $\tilde{u}_i = \begin{pmatrix} d_i & e_i \end{pmatrix}$

Three-gluon glueballs C = -

THE RESULTS

Gluons with spin $\rightarrow J = L + S$ Good results for 1⁻⁻ and 3⁻⁻ but higher 2⁻⁻ \leftarrow symmetry

Disagreement with lattice QCD for PC = +-

This model cannot explain the splitting $\sim 2~{\rm GeV}$ between 1^{+-} and 0^{+-}

$$0^{+-}, 1^{+-}, 2^{+-}, 3^{+-}$$
 are $L=1$ and degenerate in a model with spin

J^{PC}	(L,S)	J^{PC}	(L,S)
1	(0,1)	0+-	(1,1)
2	(0,2)	1+-	(1,1)
3	(0,3)	2+-	(1,1)
0-+	(1,1)	3+-	(1,2)

Solution: Implementation of the helicity formalism for three transverse gluons.

$$\begin{aligned} d_{abc}A^a_{\mu}A^b_{\nu}A^c_{\rho} & & [(88)_{8_s}8]^{\mathbf{1}} & & C = - \\ f_{abc}A^a_{\mu}A^b_{\nu}A^c_{\rho} & & [(88)_{8_a}8]^{\mathbf{1}} & & C = + \end{aligned}$$

S	S_{int}	Symmetry	J^{PC}
0	0	1 A	0_{-+}
1	0, 1, 2	1 S, 2 MS	1
2	1, 2	2 MS	$2^{}$
3	2	1 S	3

HELICITY FORMALISM FOR TWO-GLUON GLUEBALLS

Yang's theorem: $\rho \nrightarrow \gamma \gamma$ $\gamma \gamma \sim gg \rightarrow J \neq 1$ J = L + S cannot hold for relativistic system. J is the only relevant quantum number.

Solution: Helicity formalism for transverse gluons with helicity $s_i = 1$. Only two projection, $\lambda_i = \pm 1$.

Formalism to handle with massless particles [Jacob and Wick (1959)] State J^{PC} in term of usual (L, S) states (with $\Lambda = \lambda_1 - \lambda_2$):

$$|J, M; \lambda_1, \lambda_2\rangle = \sum_{L,S} \left[\frac{2L+1}{2J+1} \right]^{1/2} \langle L0S\Lambda | J\Lambda \rangle \langle s_1\lambda_1 s_2 - \lambda_2 | S\Lambda \rangle \Big|^{2S+1} L_J \rangle.$$

Not eigenstates of the parity and of the permutation operator.

$$\begin{array}{rcl} \mathbf{P} \left| J, M; \lambda_1, \lambda_2 \right\rangle & = & \eta_1 \eta_2 (-1)^J \left| J, M; -\lambda_1, -\lambda_2 \right\rangle, \\ P_{12} \left| J, M; \lambda_1, \lambda_2 \right\rangle & = & \left(-1 \right)^{J-2s_i} \left| J, M; \lambda_2, \lambda_1 \right\rangle, \end{array}$$

HELICITY FORMALISM FOR TWO-GLUON GLUEBALLS

Construction of states symmetric (bosons) and with a good parity \rightarrow selection rules.

$$|S_{+};(2k)^{+}\rangle \Rightarrow 0^{++}, 2^{++}, 4^{++}, \dots$$

$$|S_{-};(2k)^{-}\rangle \Rightarrow 0^{-+}, 2^{-+}, 4^{-+}, \dots$$

$$|D_{+};(2k+2)^{+}\rangle \Rightarrow 2^{++}, 4^{++}, \dots$$

$$|D_{-};(2k+3)^{+}\rangle \Rightarrow 3^{++}, 5^{++}, \dots$$

States expressed in term of the usual basis (useful to compute matrix elements!). Low-lying states:

$$|S_{+};0^{+}\rangle = \sqrt{\frac{2}{3}} |^{1}S_{0}\rangle + \sqrt{\frac{1}{3}} |^{5}D_{0}\rangle,$$

$$|S_{-};0^{-}\rangle = |^{3}P_{0}\rangle,$$

$$|D_{+};2^{+}\rangle = \sqrt{\frac{2}{5}} |^{5}S_{2}\rangle + \sqrt{\frac{4}{7}} |^{5}D_{2}\rangle + \sqrt{\frac{1}{7}} |^{5}G_{2}\rangle,$$

$$|D_{-};3^{+}\rangle = \sqrt{\frac{5}{7}} |^{5}D_{3}\rangle + \sqrt{\frac{2}{7}} |^{5}G_{3}\rangle,$$

$$|S_{-};2^{-}\rangle = \sqrt{\frac{2}{5}} |^{3}P_{2}\rangle + \sqrt{\frac{3}{5}} |^{3}F_{3}\rangle.$$

APPLICATION

Same hierarchy as the lattice QCD Application with a simple Cornell potential

$$H^0 = 2\sqrt{\mathbf{p}^2} + \frac{9}{4}\sigma r - 3\frac{\alpha_s}{r}.$$

Parameters:

$$\sigma = 0.185 \text{ GeV}^2 \qquad \alpha_s = 0.45$$

Addition of an instanton induced interaction to split the degeneracy between the 0^{++} and 0^{-+}

$$\Delta H_I = -P \mathcal{I} \delta_{J,0}$$
 with $\mathcal{I} = 450$ MeV.

Instanton attractive in the scalar channel and repulsive in the pseudoscalar and equal in magnitude

Very good agreement without spin-dependent potential

Extension for three-body systems?

THREE-GLUON GLUEBALLS WITH TRANSVERSE GLUONS

 $SU(2) \times SU(3)$ decomposition for two gluons \rightarrow to the lowest J:

$$\square^{a} \otimes \square^{b} = \square \square^{(ab)} \oplus \bullet^{(ab)} \oplus \square^{[ab]}$$

Lowest J allowed for 3 gluons with helicity:

Low-lying states are J=1 and J=3 with symmetric colour function and J=0 with an antisymmetric colour function

Low-lying states are the $1^{\pm -}$, $3^{\pm -}$ and the $0^{\pm +}$

 $J = 0^{P-}$ are not allowed for three-gluon glueballs $\rightarrow 0^{+-}$ four transverse gluons

The result should be confirmed by a detailed analysis of the three-body helicity formalism. These developments are under construction

CONCLUSION

Model with spin-1 gluons reproduces the pure gauge spectrum but spin-dependent potentials should be added and the spectrum is plagued with unwanted states

Three-gluon glueballs with massive gluon cannot reproduce the lattice data

With two transverse gluons, a simple linear+Coulomb potential reproduce the lattice QCD results.

Implementation of the helicity formalism for three transverse gluons should solve the hierarchy problem

References

V. Mathieu, N. Kochelev, V. Vento "The Physics of Glueballs" invited review for Int. J. Mod. Phys. E arXiv:0810.4453 [hep-ph]

V. Mathieu, F. Buisseret and C. Semay "Gluons in Glueballs: Spin or Helicity?" Phys. Rev. D 77, 114022 (2008), [arXiv:0802.0088 [hep-ph]]

V. Mathieu, C. Semay and B. Silvestre-Brac "Semirelativistic Potential Model for Three-gluon Glueballs." Phys. Rev. D77 094009 (2008), [arXiv:0803.0815 [hep-ph]]

N. Boulanger, F. Buisseret, V. Mathieu, C. Semay "Constituent Gluon Interpretation of Glueballs and Gluelumps." arXiv:0806.3174 [hep-ph] accepted for publication in Eur. Phys. Jour. A