

Etudes du quark top au Tevatron

Frédéric Déliot CEA-Saclay

> dapnia CCCC saclay

Séminaire LPNHE, 8 février 2007

Plan de l'exposé

- Introduction
 - \rightarrow pourquoi étudier le quark top ?
 - \rightarrow juste un peu d'histoire
- · Le Tevatron
- La production par paire
 - \rightarrow section efficace, recherche résonance tt
 - \rightarrow masse
 - \rightarrow quelques autres propriétés
- Production électrofaible
- Conclusion

Pourquoi étudier le quark top?

- C'est le quark le plus « jeune »
 - ightarrow découverte au Tevatron il y a 12 ans
 - \rightarrow beaucoup de propriétés restent à étudier avec précision
- C'est la particule élémentaire la plus lourde
 - \rightarrow ~ 40 fois plus lourde que son partenaire le quark b
 - ightarrow couplage de Yukawa au boson de Higgs proche de 1
 - \rightarrow seul quark à se désintégrer avant de s'hadroniser: accès à ses propriétés directement
 - rôle particulier ?

• La physique du quark top est riche

Physique du quark top

+ production électrofaible

F. Déliot, LPNHE 8 fevrier 2007

Un peu d'histoire

• Premières recherches directes

 \rightarrow après la découverte du c et du b, recherche de toponium t \overline{t} vers 27 GeV

 \rightarrow recherches sur collisioneurs e⁺e⁻:

DESY-PETRA (1980), \sqrt{s} = 12-36 GeV \Rightarrow M_{top} > 30 GeV LEP 1 (1989), \sqrt{s} = 91 GeV \Rightarrow M_{top} > 45.8 GeV

 \rightarrow recherches sur collisionneurs pp:

UA1 et UA2 (1981 \rightarrow 1990) , \sqrt{s} = 640 GeV \Rightarrow M_{top} > 69 GeV

Tevatron Run I (1990 \rightarrow 1992), \sqrt{s} = 1.8 TeV \Rightarrow M_{top} > 91 GeV

Recherches indirectes:

 \rightarrow mesures de précision des observables sensibles aux corrections radiatives

dépendance quadratique en M_{top} LEP (1994): M_{top} = 177 ± 21 GeV

• Découverte au Tevatron:

→ Tevatron Run I (1995), \sqrt{s} = 1.8 TeV M_{top} = 176 ± 8 (stat) ± 10 (syst) GeV (CDF) M_{top} = 199 ± 19 (stat) ± 22 (syst) GeV (D0)

Le Tevatron

• collisionneur $p\overline{p}$, $\sqrt{s} = 1.96$ TeV

 \rightarrow temps de croisement: 396 ns, 36x36 paquets

- \rightarrow expériences CDF et D0
- · période de prise de données:
 - \rightarrow Run I (1993-1996): L_{fournie} ~ 120 pb⁻¹ / expérience
 - \rightarrow Run IIa (2002 mars 2006): L_{fournie} ~ 1.5 fb^{-1}

 \rightarrow Run IIb (août 2006 - 2009): L_{fournie} ~ 4 à 8 fb^{-1}

Efficacité typique de prise de données: 85% Taux de déclenchement au L1=1kHz, L3=50Hz

6

Le quark top au Tevatron

Mode de production dominant par interaction forte (paire)

Signature de la production par paire

• désintégration du top: $t \rightarrow Wb \sim 100\%$

 \rightarrow signature suivant les modes de désintégrations du W

Mesure de la section efficace $t\overline{t}$

• Intérêt de la mesure

 \rightarrow maîtrise de la sélection tT et des bruits de fond

 \rightarrow validation des calculs + dépendance avec $M_{top}: \Delta\sigma(t\overline{t})/\sigma \approx 5\Delta M_{top}/M_{top}$

→ recherche de phénomènes au delà du MS:
• résonance lourde se désintégrant en tT ex: topcolor, gg → H/A → tT (m_{H,A}>2m_t, faible tanβ), ... recherche de pic dans le spectre de masse invariante tT
• désintégration non standard du top ex: t→H⁺b, FCNC (vertex tgq), opérateurs de dimension > 4 recherche de déviation à Br(t→Wb)=100% (taux de production non standard)

Canal lepton (e,μ) + jets

• Signature:

- Lepton de haut Pt isolé Grande E/_T 4 jets (2 jets de b) + grande énergie, centrale, sphérique
 - 2 stratégies:

Selection:

Trigger lepton (+jets) Pt(ℓ) > 20 GeV, isolé E/_T > 20 GeV Pt(jet) > 15 GeV

 \rightarrow topologie: likelihood ou NN basé sur variables cinématiques (aplanarité, sphéricité, H_T, angles, masses invariantes, ...)

 \rightarrow b-tagging (reconstruction d'un vertex secondaire venant du b)

- Acceptance:
 - ~ 10 % (4 jets, avant tagging)
- typiquement S/B:
 - 1/5 (3 jets, topologique)
 - 2/1 (3 jets, b-tag)

•Bruit de fond:

 \rightarrow W + jets : MC Alpgen, normalisé sur les données

 \rightarrow non W (QCD) : faux lepton, déterminé dans les données

 \rightarrow diboson, Z+jets : MC, sections efficaces du MS

Résultats du canal lepton + jets

 $\sigma(t\bar{t}) = 8.2 \pm 0.6 \text{ (stat)} \pm 1.0 \text{ (sys) pb}$ $\sigma(t\bar{t}) = 6.0 \pm 0.6 \text{ (stat)} \pm 0.9 \text{ (sys) pb}$

• systématiques dominantes:

 \rightarrow b-tagging : 6.5 % (b-tag), bdf W+jets : ~10% (NN)

~ 18%

 \rightarrow PDF : ~ 5%, luminosité : ~ 6%

 \rightarrow échelle d'énergie des jets (JES) : ~ 3-8%

Recherche de résonance tt

•Des phénomènes non standard peuvent donner des résonances dans le spectre tt:

- \rightarrow Z', topcolor, KK, ...
- •Recherche dans le canal ℓ +jets avec b-tagging

 \rightarrow reconstruction du spectre t par un fit cinématique

 \rightarrow modèle de phénomène nouveau : boson neutre lourd avec les mêmes couplages que le Z^0

F. Déliot, LPNHE 8 fevrier 2007

Canal dilepton (e,μ)

g DOOO

antiprotor

• Signature:

- 2 leptons de haut Pt isolé Grande E/_T 2 jets de b
- + grande énergie, centrale, sphérique
 - stratégie complémentaire:
 - → lepton + track : trace isolée besoin du b-tagging pour augmenter la pureté
- Acceptance:
 - ~ 15 %
- typiquement S/B:
 2/1

•Bruit de fond:

 \rightarrow Z + jets : Z \rightarrow ee/µµ +faux E/_T ou Z \rightarrow $\tau\tau$, MC Alpgen, normalisé sur les données

 \rightarrow faux lepton (QCD) : déterminé dans les données

 \rightarrow diboson (WW,WZ) : MC, sections efficaces du MS

F. Déliot, LPNHE 8 fevrier 2007

Selection:

Trigger (di)lepton (+jets) Pt(ℓ) > 15-20 GeV, isolé (E/_T > 20-25 GeV) Pt(jet) > 15 GeV

Méthode de mesure des efficacités des leptons

- un exemple: efficacité de trigger muon
 - \rightarrow mesurée dans les données à partir d'événements $Z^0{\rightarrow}\mu\mu$
 - \rightarrow méthode tag and probe : un muon de contrôle et un muon de test

 \rightarrow basée sur le fait qu'on peut obtenir un échantillon pur de Z^0 en utilisant un seul muon complètement identifié

 \rightarrow on applique les efficacités mesurées dans les données sur le MC

Résultats du canal dilepton

F. Déliot, LPNHE 8 fevrier 2007

Canal hadronique

• Signature:

6 jets dont 2 jets de b

+ grande énergie, centrale, sphérique

Selection:

Multijet trigger (4 jets, Pt>10-25 GeV + CDF: H_T>125GeV) Au moins 6 jets D0: Pt(jet) > 45-20 et 15 GeV aplanarité, sphéricité, ... CDF: NN (H_T, M_{jj}, M_{jjj}, angles, ...)

Rôle essentiel du b-tagging Combinatoire importante

Acceptance:

~ 2-4 %

• typiquement S/B: 1/2 (CDF) - 1/4 (D0)

•Bruit de fond:

 \rightarrow QCD : déterminé dans les données (données 4 jets)

Etiquetage des quarks b

• propriétés des quarks b:

 \rightarrow les hadrons b volent avant de se désintégrer (c $\tau \sim 0.5 mm$)

 \rightarrow les hadrons b peuvent se désintégrer semi-leptoniquement: b $\rightarrow\!\mu\nu c$

• On utilise pour le b-tag:

 \rightarrow le fait que les traces issues du b ont un grand paramètre d'impact

 \rightarrow qu'on a reconstruit un vertex secondaire

 \rightarrow qu'il y a un μ dans un jet

 \rightarrow combinaison de tous ces critères dans un NN

• Au Tevatron typiquement:

 $\rightarrow \epsilon \approx 50\%$ pour 0.6-1% de mauvaise identification (mesurée dans les données)

Résultats du canal hadronique

360 pb⁻¹: σ(11) = 12.1 ± 4.9 (stat) ± 4.6 (sys) pb

• systématiques dominantes:

 \rightarrow échelle d'énergie des jets (JES) : ~ 15%

- \rightarrow efficacité de b-tagging : ~ 18%
- \rightarrow DO: soustraction du bdf : ~ 25 %

1.02 fb⁻¹: $\sigma(t\bar{t}) = 8.3 \pm 1.0 (stat)^{+1.0} (sys) \pm 0.5 (lumi) pb$ ~ 25%

Résume des mesures actuelles de section efficace $t\overline{t}$

bilan et perspectives:

 \rightarrow actuellement : $\Delta \sigma_{t\bar{t}} / \sigma \sim 12$ % (~ théorie), plus dominé par la statistique

2

Δ

- \rightarrow perspectives: si même systématique, 4 fb⁻¹: $\Delta \sigma_{tt}/\sigma$ = 10 %
- \rightarrow LHC: 5-10% avec 10 fb⁻¹

F. Déliot, LPNHE 8 fevrier 2007

Assume m.=175 GeV/c²

8.3+1.5+1.0+0.5

 $6.0\pm0.6\pm0.9\pm0.3$

8.2+0.6+0.9+0.5

 $7.8 \pm 1.7 \pm _{0.9}^{1.0} \pm 0.5$

 $6.1\pm1.2\pm_{0.9}^{1.4}\pm0.4$

 $8.3\pm1.0\pm^{2.0}_{1.5}\pm0.5$

7.3±0.5±0.6±0.4

10

8

 $\sigma(p\overline{p} \rightarrow t\overline{t})$ (pb)

(stat) ± (syst) ± (lumi)

12

14

CDF Preliminary

Mesure de la masse du quark top

• Intérêt de la mesure

 \rightarrow Les observables électrofaibles dépendent fortement de la valeur de la masse du top (via les corrections radiatives)

- \Rightarrow Haute précision sur M_{top} requise pour :
- tests de précision du Modèle Standard (MS)
- contraintes sur la masse du boson de Higgs au sein du MS
- grande sensibilité à la physique au-delà du MS

Pourquoi est-ce une mesure difficile ?

120

60

20

• Pas seulement une reconstruction de masse invariante:

 \rightarrow l'énergie mesurée des jets n'est pas l'énergie des quarks issus du top

 \Rightarrow Nécessite d'une bonne correction de l'énergie des jets et d'une bonne modélisation des *extra* jets

- Toutes les particules de l'état final ne sont pas mesurées (et il y a 2 tops)
 - \rightarrow neutrino(s) non détecté(s)

1 v, sur-contraint (⇒ calibration in situ JES) Combinatoire (1 btag): 6 Canal en or

2 v, sous-contraint bdf et Br petit Combinatoire : 2

100 120 140 160 180 200 220 240 260 280 300

Masse invariante W(jj)-b

Overflow

Mtop =175 GeV

sur-contraint bdf et Br grand Combinatoire : 90

Echelle d'énergie des jets dans DO (JES)

- L'énergie mesurée dans le calorimètre (ΔR<0.5) n'est pas l'énergie partonique, il faut tenir compte de:
 - \rightarrow particules hors du cône
 - \rightarrow différence de réponse entre h/ γ
 - → occupation dans le calorimètre: pile-up, bruit, interactions multiples (MI)
- déterminée avec :

 \rightarrow événements γ +jets, Z + jets, zero/minimum biais, MC, ...

Deux méthodes principales de mesure de la masse du top

template

 \rightarrow reconstruction d'une observable cinématique bien choisie

→ création de *template* MC de cette observable pour différentes masses du top (signal + bdf)

 \rightarrow likelihood fit pour choisir le meilleur *template* et extraire M_{top}

avantages:

→ tous les effets simulés sont pris en compte → relativement simple

désavantages:

- \rightarrow choix d'une seule observable
- \rightarrow tous les evts ont le même poids

- · élément de matrice
 - \rightarrow construction d'une probabilité par evt en utilisant l'élément de matrice $\overline{t\overline{t}}\rightarrow 6$ corps (signal + bdf)
 - \rightarrow intégration sur les variables non mesurées

 \rightarrow calibration de la mesure sur MC

 \rightarrow likelihood avec cette probabilité pour extraire M_{top}

avantages:

 \rightarrow meilleur pouvoir statistique

- \rightarrow toute la cinématique de l'evt est prise en compte
- ightarrow poid's selon les evts

désavantages:

- \rightarrow gourmand en CPU
- \rightarrow pas de paramétrisation de la réponse de tous les objets

CPU nétrisatio

Méthode de la matrice (canal l+jets)

• construction d'une probabilité par événement:

ightarrow à partir de la section efficace différentielle

$$P_{evt}(x; M_{top}, JES, f_S) = f_S P_{t\bar{t}}(x; M_{top}, JES) + (1 - f_S) P_{bdf}(x; JES)$$

$$P_{t\bar{t}}(x; M_{top}, JES) = \frac{1}{Acc \times \sigma} \int d^{6}\sigma(y; M_{top}) f(q_{1})f(q_{2}) W(x, y, JES) dq_{1}dq_{2}$$

élément de matrice
LO × espace des
phases 6 corps
$$PDF$$
fonctions de transfert
(proba d'avoir l'état
partonique y quand on
mesure x)
$$W = W_{jet}(x W_{\mu})$$

- par le canal lepton+jets:
 - \rightarrow bdf: W+jets
 - \rightarrow fit à la fois la fraction de signal f_S, la correction JES (M_{jj}=M_W) et M_{top}
 - \rightarrow le fit de JES permet de réduire l'erreur systématique

Mesure de la masse du top dans le canal dilepton

Méthode de la matrice:

- \rightarrow même technique que pour le canal lepton+jets
- \rightarrow moins de contraintes (2 v) \Rightarrow une intégration en plus
- ightarrow pas de calibration in-situ de JES possible (2 W $ightarrow \ell
 u$)
- \rightarrow bdf: WW+jets, Z+jets

• Méthode neutrino weighting: (*template* avec E_{T})

 \to E/_ mesurée comparée avec E/_ calculée pour une hypothèse de M_{top} et 2 η_{ν}

 \rightarrow cette comparaison donne un poids par événement en intégrant sur η_{v}

 \rightarrow les poids des événements de données sont fittés à des *templates* MC signal + bdf pour déterminer M_{top}

Résultat du canal dilepton

835 pb⁻¹:

 M_{t} = 171.6 ± 7.9 (stat) ^{+5.1}_{-4.0} (sys) GeV

systématiques dominantes:
 → JES
 → modélisation du bdf

Résume des mesures actuelles de masse du top

F. Déliot, LPNHE 8 fevrier 2007

Autres propriétés du quark top

Mesure de l'hélicité du W

• structure V-A du couplage faible dans le MS:

 \rightarrow pas de W avec une hélicité h_w=+1 dans la désintégration du top

 \rightarrow désintégration du top: test de structure V-A de l'interaction faible à une échelle proche de l'échelle de brisure EW

 \rightarrow test présence de V+A dans le couplage Wtb

choix de l'observable reliée à h_W Pt des lenters

 \rightarrow Pt des leptons

→ dans le ref du cdm du W, angle entre la direction du lepton et la direction de vol du W dans le ref cdm du top de vol : $\cos\theta^*$ → masse invariante lepton-b: M^2_{lb}

F. Déliot, LPNHE 8 fevrier 20.

Résultat des mesures d'hélicité du W

- canal lepton+jets (+ dilepton):
 - \rightarrow avec et sans b-tagging
 - \rightarrow fit cinématique pour reconstruire le top et le W
 - \rightarrow f₀ = 0.7 fixé pour extraire f₊

- systématiques dominantes: \rightarrow JES
 - \rightarrow masse du top

F. Déliot, LPNHE 8 fevrier 2007

Mesure de la charge du guark top

• Est-ce que le quark top découvert au Tevatron est le top du MS? \rightarrow Q₊ = +2/3 ?

 \rightarrow modèle avec une 4^{ème} famille: doublet (Q₁,Q₄) de charge (-1/3, -4/3) Le quark découvert à Fermilab pourrait être Q4

(et le quark du MS reste à découvrir)

- Mesure de la charge du top
 - \rightarrow canal lepton+jets avec 2 b-tag
 - \rightarrow bdf principal: Wbb, single top

 \rightarrow association du bon quark b au lepton par un fit de la masse du top

 \rightarrow charge du top:

 $Q_1 = |q_l + q_{bl}|, Q_2 = |-q_l + q_{bb}|,$

 \rightarrow estimation de la charge du jet: $q_{jet} = \frac{\sum_{i} q_{i} \cdot p_{Ti}^{0.6}}{\sum_{i} p_{Ti}^{0.6}}$

Résultats:

- \rightarrow |q|=4/3 exclu à 92% CL
- \rightarrow fraction de guark exotique: f<0.8 à 90% CL

La production électrofaible

 \rightarrow recherche dans les désintégrations leptoniques du W venant du top

• Intérêt de la mesure

 \rightarrow mesure directe de V_{tb} (\sigma \propto |V_{tb}|^2)

 \rightarrow sensible à des processus non standard (W', FCNC, V+A)

 \rightarrow bdf important pour la recherche de Higgs

Difficultés

- \rightarrow faible section efficace, fort bdf: W+bb, tT, QCD
- \rightarrow technique d'analyse multivariable
- \rightarrow recherche au Tevatron depuis 2001 ...

F. Déliot, LPNHE 8 fevrier 2007

33

Sélection

Signature

- \rightarrow trigger : lepton + jet
- \rightarrow un seul lepton isolé de haut Pt (15-18 GeV)
- \rightarrow énergie transverse manquante (E/ \rightarrow 15 GeV)
- \rightarrow de 2 à 4 jets (pt > 25, 20 ou 15 GeV)
- \rightarrow au moins un jet étiqueté b

	Event Yields in 0.9 fb ⁻¹ Data Electron+muon, 1tag+2tags combined		
Source	2 jets	3 jets	4 jets
tb	16 ± 3	8 ± 2	2 ± 1
tqb	20 ± 4	12 ± 3	4 ± 1
$t\bar{t} \rightarrow ll$	39 ± 9	32 ± 7	11 ± 3
<i>t</i> t̄ → /+jets	20 ± 5	103 ± 25	143 ± 33
W+bb	261 ± 55	120 ± 24	35 ± 7
W+cc̄	151 ± 31	85 ± 17	23 ± 5
W+jj	119 ± 25	43 ± 9	12 ± 2
Multijets	95 ± 19	77 ± 15	29 ± 6
Total background	686 ± 131	460 ± 75	253 ± 42
Data	697	455	246

signal attendu: ~ 40 evts

A*Br = 2 - 3%

Yield [counts/10GeV] 2-4 iets Key for Plots Data tb tab 100 ±1o uncertair 60 80 100 120 140 160 180 200 Lepton p_ [GeV] 40 CDF Run II Preliminary, L=955 pb⁻¹ Event yield in W+2jets s-channel 15.4 ± 2.2 *t*-channel 22.4 ± 3.6 58.4 ± 13.5 tt Diboson 13.7 ± 1.9 11.9 ± 4.4 Z + jetsWbb 170.9 ± 50.7 Wcc 63.5 ± 19.9 Wc 68.6 ± 19.0 Non-W 26.2 ± 15.9 136.1 ± 19.7 Mistags Single top 37.8 ± 5.9 Total background 549.3 ± 95.2 Total prediction 587.1 ± 96.6 Observed 644

DØ Run II Preliminary 0.9 fb1

e+u channel 1-2 tags

Analyses multivariables

A chaque nœud, choix de la meilleure variable et de la valeur de la coupure

Entrainement sur 1/3 du MC

sortie du DT pour mesurer la section efficace

Sensibilité/Résultats

•Attendue:

 \rightarrow Probabilité pour que le bdf fluctue pour donner au moins σ_{SM} = 2.9 pb

	Sensibilité attendue
Decision tree	2.1 σ
Matrix element	1.8 σ
NN	1.3 σ

	Sensibilité attendue	
Matrix element	2.5 σ	
Likelihood	2.0 σ	

• Résultats:

B	Mesure (voie s + t)	Signification
Decision tree	$\textbf{4.9} \pm \textbf{1.4} \text{ pb}$	3.4 σ
Matrix element	4.6 ^{+1.8} -1.5 pb	2.9 σ
NN	$5.0\pm1.9~{ m pb}$	2.4 σ

	Mesure (voie s + t)	Signification
Matrix element	2.7 ^{+1.5} - _{1.3} pb	2.3 σ
Likelihood	0.3 ^{+1.2} _{-0.3} pb	
NN	0.8 ^{+1.3} - _{0.9} pb	

Résultats de la recherche de single top

Première indication à 3σ de la production de top électrofaible (hep-ex/0612052)

Probabilité pour que σ_{SM} = 2.9 pb donne la valeur mesurée: 11%

- Première mesure directe de V_{tb} : $\rightarrow |V_{tb}| = 1.3 \pm 0.2$
- $\rightarrow 0.68 < \left| V_{tb} \right| \leq 1$ (0 $\leq \! \left| V_{tb} \right| \! \leq \! 1$)

Conclusion

• Avec le Run II du Tevatron, la physique du quark top est entrée dans le domaine de la physique de précision:

 \rightarrow la statistique n'est plus le facteur limitant pour les mesures de section efficace et de masse (canal lepton+jets)

- · Le Modèle Standard est testé dans le secteur du top
 - \rightarrow première indication de la présence de single top
 - \rightarrow masse du top (contraintes indirectes sur le Higgs)
 - \rightarrow propriétés et couplages du quark top
 - \rightarrow limites sur des processus non standard

• Le Run IIb vient juste de commencer

 \rightarrow on attend au moins 5x plus de luminosité à la fin du Run II

 \rightarrow la précision atteinte à la fin du Run II du Tevatron sera souvent compétitive avec les futures mesures au LHC

 \rightarrow des surprises ?

Backup Slides

Les détecteurs CDF et DO Run II

