More theoretical topics

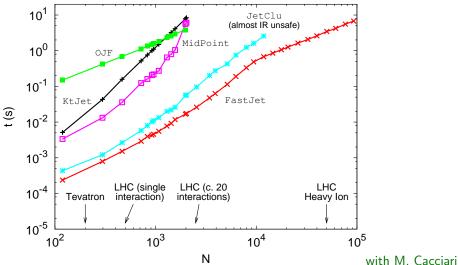
- ► High-energy limit of QCD (*BFKL* and its higher order corrections)
 - with Ciafaloni, Colferai, Stasto

with Dokshitzer. Marchesini

Structures in perturbation theory

More phenomenological topics

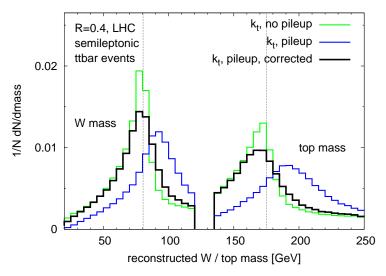
 Event shapes and resummations: applications including gaining insight into hadronization and UE corrections at hadron colliders

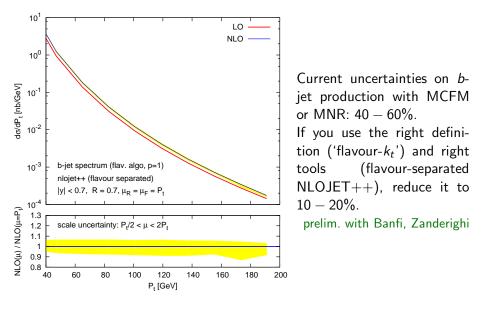

with Banfi, Zanderighi

- General aspects of *jet-finding*: jet definitions, implementations, phenomenological 'performance' with Cacciari, Rubin, Soyez
- Flavour of jets: theoretical meaning, well-defined b-jets, distinguishing quark v. gluon jets experimentally.
 with Banfi, Rojo, Zanderighi

Many event shapes studied using *automated resummation* (CAESAR). Related calculations give hints on hadronisation & UE sensitivity — much complementarity between observables, so potentially valuable input in study of hadr. and UE at *pp* colliders.

Event-shape	Impact of η_{\max}	Resummation breakdown	Underlying Event	Jet hadronisation
$ au_{\perp,g}$	tolerable	none	$\sim \eta_{\sf max}/{\it Q}$	$\sim 1/Q$
$T_{m,g}$	tolerable	none	$\sim \eta_{\sf max}/{\it Q}$	$\sim 1/(\sqrt{lpha_{\sf s}} Q)$
<i>y</i> ₂₃	tolerable	none	$\sim \sqrt{y_{23}}/Q$	$\sim \sqrt{y_{23}}/Q$
$ au_{\perp,\mathcal{E}}$, $ ho_{\mathbf{X},\mathcal{E}}$	negligible	none	$\sim 1/Q$	$\sim 1/Q$
$B_{X,\mathcal{E}}$	negligible	none	$\sim 1/Q$	$\sim 1/(\sqrt{lpha_{\sf s}} Q)$
$T_{m,\mathcal{E}}$	negligible	serious	$\sim 1/Q$	$\sim 1/(\sqrt{lpha_{\sf s}} Q)$
<i>У</i> 23, <i>E</i>	negligible	none	$\sim 1/Q$	$\sim \sqrt{y_{23}}/Q$
$\tau_{\perp,\mathcal{R}}, \rho_{X,\mathcal{R}}$	none	serious	$\sim 1/Q$	$\sim 1/Q$
$T_{m,\mathcal{R}}, B_{X,\mathcal{R}}$	none	tolerable	$\sim 1/Q$	$\sim 1/(\sqrt{lpha_{\sf s}} Q)$
У23, <i>R</i>	none	intermediate	$\sim \sqrt{y_{23}}/Q$	$\sim \sqrt{y_{23}}/Q$


Getting k_t and Cambridge jet finders to go fast (FastJet v. KtJet) enough for LHC:



Jet-finding (correcting for pileup)

E.g. in $t\bar{t}$ at LHC:

Prelim. with M. Cacciari

