RESEARCH INTERESTS

Juan Rojo-Chacón

 $\mathsf{Exp}/\mathsf{Th}\ \mathsf{LPNHE}/\mathsf{LPTHE}\ \mathsf{meeting}$

November 29, 2006

Juan Rojo-Chacón RESEARCH INTERESTS Exp/Th LPNHE/LPTHE meeting

< 冊

CV - in brief

- Degree in Physics at the Universitat de Barcelona
- Ph.D. in Theoretical Physics at the Universitat de Barcelona (hep-ph/0607122) under the supervision of J.I. Latorre and S. Forte (Milan)
- \blacktriangleright October 2006 October 2008 \rightarrow Postdoctoral CNRS researcher at the LPTHE.

Perturbative Quantum Chromodynamics

- 1. New approaches to global fits of **Parton Distribution Functions (The neural network approach)**, (hep-ph/0501067, hep-ph/0607199).
- Large and small-x resummations (hep-ph/0601048)
- B-physics, effective theories (hep-ph/0605248, hep-ph/0601229)
- 4. Ultra-high energy neutrino physics (ICECUBE)
- 5. Jet physics.
- Other
 - Astroparticles: atmospheric neutrinos (Super Kamiokande) (hep-ph/0607324).
 - 2. Artificial intelligence, neural networks, genetic algorithms, data mining ...

・ロト ・回ト ・ モト

Perturbative Quantum Chromodynamics

- 1. New approaches to global fits of **Parton Distribution Functions (The neural network approach)**, (hep-ph/0501067, hep-ph/0607199).
- 2. Large and small-x resummations (hep-ph/0601048)
- B-physics, effective theories (hep-ph/0605248, hep-ph/0601229)
- 4. Ultra-high energy neutrino physics (ICECUBE)
- 5. Jet physics.

Other

- Astroparticles: atmospheric neutrinos (Super Kamiokande) (hep-ph/0607324).
- 2. Artificial intelligence, neural networks, genetic algorithms, data mining ...

・ロト ・回 ト ・ ヨト

Perturbative Quantum Chromodynamics

- 1. New approaches to global fits of **Parton Distribution Functions (The neural network approach)**, (hep-ph/0501067, hep-ph/0607199).
- 2. Large and small-x resummations (hep-ph/0601048)
- B-physics, effective theories (hep-ph/0605248, hep-ph/0601229)
- 4. Ultra-high energy neutrino physics (ICECUBE)
- 5. Jet physics.
- Other
 - Astroparticles: atmospheric neutrinos (Super Kamiokande) (hep-ph/0607324).
 - 2. Artificial intelligence, neural networks, genetic algorithms, data mining ...

・ロト ・回ト ・ ヨト ・

Perturbative Quantum Chromodynamics

- 1. New approaches to global fits of **Parton Distribution Functions (The neural network approach)**, (hep-ph/0501067, hep-ph/0607199).
- 2. Large and small-x resummations (hep-ph/0601048)
- 3. B-physics, effective theories (hep-ph/0605248, hep-ph/0601229)
- 4. Ultra-high energy neutrino physics (ICECUBE)
- 5. Jet physics.
- Other
 - Astroparticles: atmospheric neutrinos (Super Kamiokande) (hep-ph/0607324).
 - 2. Artificial intelligence, neural networks, genetic algorithms, data mining ...

・ロト ・回ト ・ ヨト ・

Perturbative Quantum Chromodynamics

- 1. New approaches to global fits of **Parton Distribution Functions (The neural network approach)**, (hep-ph/0501067, hep-ph/0607199).
- 2. Large and small-x resummations (hep-ph/0601048)
- B-physics, effective theories (hep-ph/0605248, hep-ph/0601229)
- 4. Ultra-high energy neutrino physics (ICECUBE)
- 5. Jet physics.
- Other
 - Astroparticles: atmospheric neutrinos (Super Kamiokande) (hep-ph/0607324).
 - 2. Artificial intelligence, neural networks, genetic algorithms, data mining ...

・ロト ・回 ト ・ ヨト

Perturbative Quantum Chromodynamics

- 1. New approaches to global fits of **Parton Distribution Functions (The neural network approach)**, (hep-ph/0501067, hep-ph/0607199).
- 2. Large and small-x resummations (hep-ph/0601048)
- B-physics, effective theories (hep-ph/0605248, hep-ph/0601229)
- 4. Ultra-high energy neutrino physics (ICECUBE)
- 5. Jet physics.
- Other
 - Astroparticles: atmospheric neutrinos (Super Kamiokande) (hep-ph/0607324).
 - 2. Artificial intelligence, neural networks, genetic algorithms, data mining ...

イロト イヨト イヨト

Perturbative Quantum Chromodynamics

- 1. New approaches to global fits of **Parton Distribution Functions (The neural network approach)**, (hep-ph/0501067, hep-ph/0607199).
- 2. Large and small-x resummations (hep-ph/0601048)
- B-physics, effective theories (hep-ph/0605248, hep-ph/0601229)
- 4. Ultra-high energy neutrino physics (ICECUBE)
- 5. Jet physics.

Other

- 1. Astroparticles: atmospheric neutrinos (Super Kamiokande) (hep-ph/0607324).
- 2. Artificial intelligence, neural networks, genetic algorithms, data mining ...

・ロト ・回ト ・ モト

Perturbative Quantum Chromodynamics

- 1. New approaches to global fits of **Parton Distribution Functions (The neural network approach)**, (hep-ph/0501067, hep-ph/0607199).
- 2. Large and small-x resummations (hep-ph/0601048)
- B-physics, effective theories (hep-ph/0605248, hep-ph/0601229)
- 4. Ultra-high energy neutrino physics (ICECUBE)
- 5. Jet physics.

Other

- 1. Astroparticles: atmospheric neutrinos (Super Kamiokande) (hep-ph/0607324).
- 2. Artificial intelligence, neural networks, genetic algorithms, data mining ...

Image: A math a math

Perturbative Quantum Chromodynamics

- 1. New approaches to global fits of **Parton Distribution Functions (The neural network approach)**, (hep-ph/0501067, hep-ph/0607199).
- 2. Large and small-x resummations (hep-ph/0601048)
- B-physics, effective theories (hep-ph/0605248, hep-ph/0601229)
- 4. Ultra-high energy neutrino physics (ICECUBE)
- 5. Jet physics.

Other

- 1. Astroparticles: atmospheric neutrinos (Super Kamiokande) (hep-ph/0607324).
- 2. Artificial intelligence, neural networks, genetic algorithms, data mining ...

1. Parametrize the PDFs at a starting evolution scale Q_0^2 with a functional form

$$q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} \left(1 + d_i x + e_i x^2 + \ldots\right)$$

Large x: Counting rules, small x: Regge theory (not from QCD!)

2. Evolve each PDF (DGLAP equations) to the scale Q^2 of experimental data + add perturbative coefficients

$$F_i^{(QCD)} = C_{ij}(x, \alpha(Q^2)) \otimes q_j(x, Q^2)$$

3. Minimize a statistical estimator, like the diagonal χ^2 until convergence is achieved

$$\chi^2_{
m diag} = rac{1}{N_{
m dat}} \sum_{i=1}^{N_{
m dat}} \left(F^{(
m exp)}_i - F^{(QCD)}_i
ight)^2 /\sigma^2_i$$

4. Assess the uncertainties (theoretical and experimental) associated with this best fit set.

Juan Rojo-Chacón RESEARCH INTERESTS Exp/Th LPNHE/LPTHE meeting

Image: A math a math

1. Parametrize the PDFs at a starting evolution scale Q_0^2 with a functional form

$$q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} \left(1 + d_i x + e_i x^2 + \ldots\right)$$

Large x: Counting rules, small x: Regge theory (not from QCD!)

2. Evolve each PDF (DGLAP equations) to the scale Q^2 of experimental data + add perturbative coefficients

$$F_i^{(QCD)} = C_{ij}(x, \alpha(Q^2)) \otimes q_j(x, Q^2)$$

3. Minimize a statistical estimator, like the diagonal χ^2 until convergence is achieved

$$\chi^2_{\rm diag} = \frac{1}{N_{\rm dat}} \sum_{i=1}^{N_{\rm dat}} \left(F_i^{(\rm exp)} - F_i^{(QCD)} \right)^2 / \sigma_i^2$$

< □ > < 同 >

Exp/Th LPNHE/LPTHE meeting

4. Assess the uncertainties (theoretical and experimental) associated with this best fit set.

Juan Rojo-Chacón RESEARCH INTERESTS

1. Parametrize the PDFs at a starting evolution scale Q_0^2 with a functional form

$$q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} \left(1 + d_i x + e_i x^2 + \ldots\right)$$

Large x: Counting rules, small x: Regge theory (not from QCD!)

2. Evolve each PDF (DGLAP equations) to the scale Q^2 of experimental data + add perturbative coefficients

$$F_i^{(QCD)} = C_{ij}(x, \alpha(Q^2)) \otimes q_j(x, Q^2)$$

3. Minimize a statistical estimator, like the diagonal χ^2 until convergence is achieved

$$\chi^2_{\rm diag} = \frac{1}{N_{\rm dat}} \sum_{i=1}^{N_{\rm dat}} \left(F_i^{(\rm exp)} - F_i^{(QCD)} \right)^2 / \sigma_i^2$$

4. Assess the uncertainties (theoretical and experimental) associated with this best fit set.

Juan Rojo-Chacón RESEARCH INTERESTS

Parton distributions carry different potential sources of (large) uncertainties:

- 1. Experimental uncertainties: experimental data has finite precision.
- 2. Theoretical uncertainties: perturbative calculations are always approximate.
- 3. Intrinsic uncertainties: functional form bias (see e.g hep-ph/0611254).

Moreover, PDFs uncertainties need to be propagated to observables in a faithful way.

Are PDFs uncertainties phenomenologically relevant? For the LHC parton distributions are essential:

$$\sigma(Q^2) = C_{ij}\left(x, \alpha_s(Q^2)\right) \otimes q_i(x, Q^2) \otimes q_j(x, Q^2)$$

PDF uncertainties are dominant in many benchmark LHC processes (e.g. Higgs production, hep-ph/0508222)

Image: A math a math

Parton distributions carry different potential sources of (large) uncertainties:

- 1. Experimental uncertainties: experimental data has finite precision.
- 2. Theoretical uncertainties: perturbative calculations are always approximate.
- 3. Intrinsic uncertainties: functional form bias (see e.g hep-ph/0611254).

Moreover, PDFs uncertainties need to be propagated to observables in a faithful way.

Are PDFs uncertainties phenomenologically relevant? For the LHC parton distributions are essential:

$$\sigma(Q^2) = C_{ij}\left(x, \alpha_s(Q^2)\right) \otimes q_i(x, Q^2) \otimes q_j(x, Q^2)$$

PDF uncertainties are dominant in many benchmark LHC processes (e.g. Higgs production, hep-ph/0508222)

Image: A math a math

Parton distributions carry different potential sources of (large) uncertainties:

- 1. Experimental uncertainties: experimental data has finite precision.
- 2. Theoretical uncertainties: perturbative calculations are always approximate.
- 3. Intrinsic uncertainties: functional form bias (see e.g hep-ph/0611254).

Moreover, PDFs uncertainties need to be propagated to observables in a faithful way.

Are PDFs uncertainties phenomenologically relevant? For the LHC parton distributions are essential:

$$\sigma(Q^2) = C_{ij}\left(x, \alpha_s(Q^2)\right) \otimes q_i(x, Q^2) \otimes q_j(x, Q^2)$$

PDF uncertainties are dominant in many benchmark LHC processes (e.g. Higgs production, hep-ph/0508222)

Parton distributions carry different potential sources of (large) uncertainties:

- 1. Experimental uncertainties: experimental data has finite precision.
- 2. Theoretical uncertainties: perturbative calculations are always approximate.
- 3. Intrinsic uncertainties: functional form bias (see e.g hep-ph/0611254).

Moreover, PDFs uncertainties need to be propagated to observables in a faithful way.

Are PDFs uncertainties phenomenologically relevant? For the LHC parton distributions are essential:

$$\sigma(Q^2) = C_{ij}\left(x, \alpha_s(Q^2)\right) \otimes q_i(x, Q^2) \otimes q_j(x, Q^2)$$

PDF uncertainties are dominant in many benchmark LHC processes (e.g. Higgs production, hep-ph/0508222)

Parton distributions carry different potential sources of (large) uncertainties:

- 1. Experimental uncertainties: experimental data has finite precision.
- 2. Theoretical uncertainties: perturbative calculations are always approximate.
- 3. Intrinsic uncertainties: functional form bias (see e.g hep-ph/0611254).

Moreover, PDFs uncertainties need to be propagated to observables in a faithful way.

Are PDFs uncertainties phenomenologically relevant? For the LHC parton distributions are essential:

$$\sigma(\boldsymbol{Q}^2) = \boldsymbol{C}_{ij}\left(\boldsymbol{x}, \alpha_{\mathfrak{s}}(\boldsymbol{Q}^2)\right) \otimes \boldsymbol{q}_i(\boldsymbol{x}, \boldsymbol{Q}^2) \otimes \boldsymbol{q}_j(\boldsymbol{x}, \boldsymbol{Q}^2)$$

PDF uncertainties are dominant in many benchmark LHC processes (e.g. Higgs production, hep-ph/0508222)

The **NNPDF Collaboration**: L. del Debbio (Edinburgh), S. Forte (Milan), J.I. Latorre (Barcelona), A. Piccione (Torino) and J. Rojo (Paris).

We use a combination of Monte Carlo methods and neural networks as unbiased universal interpolants to construct a probability measure in the space of functions $\mathcal{P}\left[F(x, Q^2)\right]$ from experimental data.

- Monte Carlo replica generation → Faithful estimation of the uncertainties and non-linear error propagation.
- Neural network training → No bias due to fixed functional forms, faithful extrapolation

The probability measure $\mathcal{P}[F]$ contains all information from experimental data (central values, errors, correlations) with the only assumption of smoothness. Expectation values \rightarrow Functional integrals over probability measure

$$\left\langle \mathcal{F}\left[F(x,Q^{2})\right]\right\rangle = \int \mathcal{D}F\mathcal{F}\left[F(x)\right]\mathcal{P}\left[F(x)\right] = \frac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left(F^{(\mathrm{net})(k)}(x,Q^{2})\right)$$

The **NNPDF Collaboration**: L. del Debbio (Edinburgh), S. Forte (Milan), J.I. Latorre (Barcelona), A. Piccione (Torino) and J. Rojo (Paris). We use a combination of Monte Carlo methods and neural networks as unbiased universal interpolants to construct a probability measure in the space of functions $\mathcal{P}[F(x, Q^2)]$ from experimental data.

- Monte Carlo replica generation → Faithful estimation of the uncertainties and non-linear error propagation.
- Neural network training → No bias due to fixed functional forms, faithful extrapolation

The probability measure $\mathcal{P}[F]$ contains all information from experimental data (central values, errors, correlations) with the only assumption of smoothness. Expectation values \rightarrow Functional integrals over probability measure

$$\left\langle \mathcal{F}\left[F(x,Q^{2})\right]\right\rangle = \int \mathcal{D}F\mathcal{F}\left[F(x)\right]\mathcal{P}\left[F(x)\right] = \frac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left(F^{(\mathrm{net})(k)}(x,Q^{2})\right)$$

Image: A math a math

The **NNPDF Collaboration**: L. del Debbio (Edinburgh), S. Forte (Milan), J.I. Latorre (Barcelona), A. Piccione (Torino) and J. Rojo (Paris). We use a combination of Monte Carlo methods and neural networks as unbiased universal interpolants to construct a probability measure in the space of functions $\mathcal{P}[F(x, Q^2)]$ from experimental data.

- Monte Carlo replica generation → Faithful estimation of the uncertainties and non-linear error propagation.
- 2. Neural network training \rightarrow No bias due to fixed functional forms, faithful extrapolation

The probability measure $\mathcal{P}[F]$ contains all information from experimental data (central values, errors, correlations) with the only assumption of smoothness. Expectation values \rightarrow Functional integrals over probability measure

$$\left\langle \mathcal{F}\left[F(x,Q^2)\right]\right\rangle = \int \mathcal{D}F\mathcal{F}\left[F(x)\right]\mathcal{P}\left[F(x)\right] = \frac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left(F^{(\mathrm{net})(k)}(x,Q^2)\right)$$

The **NNPDF Collaboration**: L. del Debbio (Edinburgh), S. Forte (Milan), J.I. Latorre (Barcelona), A. Piccione (Torino) and J. Rojo (Paris). We use a combination of Monte Carlo methods and neural networks as unbiased universal interpolants to construct a probability measure in the space of functions $\mathcal{P}[F(x, Q^2)]$ from experimental data.

- Monte Carlo replica generation → Faithful estimation of the uncertainties and non-linear error propagation.
- 2. Neural network training \rightarrow No bias due to fixed functional forms, faithful extrapolation

The probability measure $\mathcal{P}[F]$ contains all information from experimental data (central values, errors, correlations) with the only assumption of smoothness. Expectation values \rightarrow Functional integrals over probability measure

$$\left\langle \mathcal{F}\left[F(x,Q^2)\right]\right\rangle = \int \mathcal{D}F\mathcal{F}\left[F(x)\right]\mathcal{P}\left[F(x)\right] = \frac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left(F^{(\mathrm{net})(k)}(x,Q^2)\right)$$

The **NNPDF Collaboration**: L. del Debbio (Edinburgh), S. Forte (Milan), J.I. Latorre (Barcelona), A. Piccione (Torino) and J. Rojo (Paris). We use a combination of Monte Carlo methods and neural networks as unbiased universal interpolants to construct a probability measure in the space of functions $\mathcal{P}[F(x, Q^2)]$ from experimental data.

- Monte Carlo replica generation → Faithful estimation of the uncertainties and non-linear error propagation.
- 2. Neural network training \rightarrow No bias due to fixed functional forms, faithful extrapolation

The probability measure $\mathcal{P}[F]$ contains all information from experimental data (central values, errors, correlations) with the only assumption of smoothness. Expectation values \rightarrow Functional integrals over probability measure

$$\left\langle \mathcal{F}\left[F(x,Q^2)\right]\right\rangle = \int \mathcal{D}F\mathcal{F}\left[F(x)\right]\mathcal{P}\left[F(x)\right] = \frac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left(F^{(\mathrm{net})(k)}(x,Q^2)\right)$$

Image: A math a math

The **NNPDF Collaboration**: L. del Debbio (Edinburgh), S. Forte (Milan), J.I. Latorre (Barcelona), A. Piccione (Torino) and J. Rojo (Paris). We use a combination of Monte Carlo methods and neural networks as unbiased universal interpolants to construct a probability measure in the space of functions $\mathcal{P}[F(x, Q^2)]$ from experimental data.

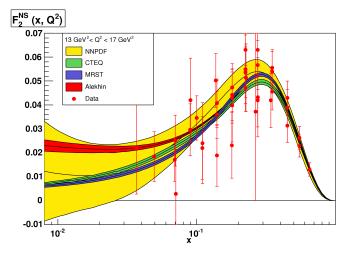
- Monte Carlo replica generation → Faithful estimation of the uncertainties and non-linear error propagation.
- 2. Neural network training \rightarrow No bias due to fixed functional forms, faithful extrapolation

The probability measure $\mathcal{P}[F]$ contains all information from experimental data (central values, errors, correlations) with the only assumption of smoothness. Expectation values \rightarrow Functional integrals over probability measure

$$\left\langle \mathcal{F}\left[F(x,Q^2)\right]\right\rangle = \int \mathcal{D}F\mathcal{F}\left[F(x)\right]\mathcal{P}\left[F(x)\right] = \frac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left(F^{(\mathrm{net})(k)}(x,Q^2)\right)$$

Juan Roio-Chacón

Results: the nonsinglet pdf



Exp/Th LPNHE/LPTHE meeting

Juan Rojo-Chacón RESEARCH INTERESTS

Future research

Perturbative Quantum Chromodynamics

- 1. Construct a global fit of parton distributions from all available data using the NNPDF approach.
- 2. Investigate phenomenological consequences at LHC, and how LHC itself can constrain parton distributions.
- Investigate the problem of jet flavor discrimination with motivation of improving accuracy in new physics searches at LHC (work in progress with M. Cacciari and G. Salam)

Future research

Perturbative Quantum Chromodynamics

- 1. Construct a global fit of parton distributions from all available data using the NNPDF approach.
- 2. Investigate phenomenological consequences at LHC, and how LHC itself can constrain parton distributions.
- Investigate the problem of jet flavor discrimination with motivation of improving accuracy in new physics searches at LHC (work in progress with M. Cacciari and G. Salam)

Future research

Perturbative Quantum Chromodynamics

- 1. Construct a global fit of parton distributions from all available data using the NNPDF approach.
- 2. Investigate phenomenological consequences at LHC, and how LHC itself can constrain parton distributions.
- Investigate the problem of jet flavor discrimination with motivation of improving accuracy in new physics searches at LHC (work in progress with M. Cacciari and G. Salam)