

Grids and Grid Applications

C. Loomis (LAL-Orsay)

EGEE Induction (Clermont-Ferrand)

March 22, 2005

GGGG

www.eu-egee.org

Acknowledgements

Enabling Grids for E-sciencE

Based on previous presentations by:

Dave Berry (NeSC) & David Fergusson

Contains material from:

- Andrew Grimshaw (Univ. of Virginia)
- Bob Jones (EGEE Tech. Director)
- Mark Parsons (EPCC)
- EDG Training Team
- Roberto Barbera (INFN)
- Ian Foster (Argonne National Laboratories)
- Jeffrey Grethe (SDSC)
- The National e-Science Centre
- M. Petitdidier (EGAPP presentation)
- O. Gervasi (EGAPP presentation)

- Introduction to Grid Computing
 - Motivation
 - Expectations & Constraints
 - Historical Perspective
 - Grid Architectures
 - Converging Technologies
- Grid Applications (e-Science)
 - Characteristics of e-Science
 - EGEE application areas
 - Typical Scenarios
- Summary/Questions

Goal of Grid Computing

Goal in one sentence:

 Allow scientists from multiple domains to use, share, and manage geographically distributed resources transparently.

Simple statement, many consequences:

- Not specific to a particular application.
- Jobs, policies cross administrative & political domains.
- Sharing requires a means for accounting.
- Transparency implies standardized services & APIs.
- Access control for data and services.
- Dynamic and heterogeneous resources.

Users

Scientists with tasks requiring computational resources.

Virtual Organizations

- People from different institutions with common goals.
- Share computational resources to achieve those goals.

System Administrators

- People responsible for keeping an institute's resources running.
- Ensuring efficient and correct use of available resources.

Real Organizations

Institutes, funding agencies, governments, ...

Standards Bodies

OASIS, GGF, W3C, IETF, ...

Grid technology allow scientists:

- access resources universally
- interact with colleagues
- analyze voluminous data
- share results

arid "Middleware"

Includes traditional resources:

- raw compute power
- storage (disk, tape, ...)
- network connectivity

Resources are:

- heterogeneous
- dynamic

Detectors produce huge amounts of data for analysis.

Non-traditional resources:

- scientific instruments
- conferencing technologies
 - video
 - audio
 - chat

Grid

Access to data:

- data files and datasets
- databases
- replica metadata
- application metadata

Manage data:

- transfer and copy data
- locate relevant data

Services:

- high-level services to facilitate use of grid
 - e.g. job brokering
- application-specific services
 - e.g. portals

rid "Middleware"

What is the grid?

- Middleware:
 - service interoperability
 - high-level services
- Resources:
 - provided by participants
 - shared for efficient use

Scientific Motivation

Enabling Grids for E-sciencE

Avoid reinventing the wheel:

- Many computational tasks are common.
- High-level, standardized services avoid duplication.
- Scientists concentrate on results rather than tools.

Resource needs grow with time:

- Start small for testing.
- Push limits for ultimate sensitivity.
- Grid APIs make finding and using additional resources easier.

Data access:

- Find and access existing data more easily.
- Share results for others to build upon.

Economic Motivation

Enabling Grids for E-sciencE

Use of computing resources varies with time.

- Analysis rush before major conferences.
- End-of-quarter financial analyzes.
- July and August holidays.

Current solutions:

- Buy peak needed capacity; idle in non-peak periods.
- Buy average capacity; delay results.

Grid solution:

- Share resources to time-shift availability.
- Buy average capacity but get timely results!
- Improve reliability with automatic failover.

Grid Projects Worldwide

Enabling Grids for E-sciencE

Access Grid

DOE Science Grid

Condor

DISCOM

ESG (Earth System Grid)

Fusion Collaboratory

Globus

GrADSoft (Grid Application

Development Software)

Grid Canada

GRIDS (Grid Research

Integration Development &

Support Center)

GriPhyN (Grid Physics

Network)

iVDGL (International Virtual

Data Grid Laboratory)

Music Grid

NASA Information Power Grid

NCSA Alliance Access Grid

AstroGrid

AVO (Astrophysical Virtual

Observatory)

Comb-e-chem

CrossGrid

DAME (Distributed Aircraft

Maintenance Environment)

DAMIEN (Distributed Applications and

Middleware for Industrial Networks)

DataTAG

Discovery Net

DutchGrid

EDG (European DataGrid)

EGSO (European Grid of Solar

Observations)

GEODISE (Grid Enabled Optimisation

& Design Search for Engineering)

GRIA (Grid Resources for Industrial Applications)

Grid-Ireland

GridLab (Grid Application

Toolkit and Testbed)

GridPP

LCG (LHC Computing Grid)

MyGrid

NGIL (National Grid for

Learning Scotland)

NorduGrid (Nordic Testbed for Wide

Area Computing and Data Handling)

PIONIER Grid

Reality Grid

ScotGrid

ApGrid

ApBioNet

Grid Forum Korea

PRAGMA (Rim Applications and Grid Middleware Assembly)

Grid Datafarm for Petascale Data Intensive Computing

Gridbus Project

Major European Grid Projects

Enabling Grids for E-sciencE

European Funded

- European DataGrid
- CrossGrid
- DataTAG
- LHC Computing Grid
- GridLab
- **EUROGRID**
- DEISA
- EGEE

DataTAG

- INFN Grid
- NorduGrid
- UK e-Science Programme

Family Tree

Underlying Technology

Enabling Grids for E-sciencE

 Relative CPU, storage, and network capability impacts computing architecture.

Historical Perspective

Enabling Grids for E-sciencE

Local Computing

- All computing resources at single site.
- People move to resources to work.

Remote Computing

- Resources accessible from distance.
- All significant resources still centralized.

Distributed Computing

- Resources geographically distributed.
- Specialized access; largely data transfers.

Grid Computing

- Resources and services geographically distributed.
- Standard interfaces; transfers of computations and data.

LCG Architecture

Enabling Grids for E-sciencE

"Peer-to-Peer" Architecture

Enabling Grids for E-sciencE

Service Oriented Architecture

Enabling Grids for E-sciencE

Existing LCG system is largely service-oriented.

EGEE evolving to a clean SOA:

standard interfaces

standard technologies

Convergence of Technologies

Enabling Grids for E-sciencl

Web Services

- Clean, complete specification of service APIs.
- Supported technology:
 - Good support within commercial sector.
 - Adequate support within open-source community.
- Very active → proposed standards rapidly evolving.

EGEE Service Evolution

- Plain web services:
 - Avoid "proprietary" protocols and interfaces.
 - Fairly stable, will ease further evolution.
- Adopt WSRF and/or WS-* standards as appropriate.
- Expect user-visible changes in APIs.

 e-Science: Pushing frontiers of scientific discovery by exploiting advanced computational methods.

- Use grid technology to:
 - Generate, curate, and analyze research data.
 - Develop and explore models and simulations.
 - Facilitate sharing of data, results, and resources.

EGEE Applications

Enabling Grids for E-sciencE

Biomedical Applications

- imaging, diagnosis, treatment
- genome and protein studies

High-Energy Physics

- simulation of particle interactions
- analysis of detector data

Earth Science

- observing terrestrial conditions
- natural resources

Computational Chemistry

simulation of chemical properties

Typical Scenarios

Enabling Grids for E-sciencE

Batch Use

- Use the grid as a huge computational resource.
- Simulation plays an important role in nearly all fields.

Portal Use

- Use grid for load balancing of standardized applications.
- Provides easy interface which hides grid complexities.

Agent Use

- Centralized control and monitoring of a large production.
- "Agent" jobs contact central database when started.

Interactive Use

- Provide improved response time for intensive calculations.
- Debugging of applications in situ.

Badly Adapted Uses

Enabling Grids for E-sciencE

Multi-site parallel jobs:

- Can't guarantee simultaneous start of all processes.
- Can't easily control bandwidth and latencies between processes.
- Can expose MPI-enabled site as a grid resource.

Tasks requiring real-time response.

- Same as above: start up and response latencies, bandwidth.
- If start up latency OK, can use "agent" model.

Grid technology attractive to many scientific endeavors:

- Provides means of sharing resources to:
 - reduce overall hardware cost
 - reduce response times
 - improve reliability
- Standardized, high-level APIs:
 - allow services to inter-operate effectively
 - allow scientists to concentrate on science rather than tools

EGEE:

- improving the technology
- deploying a powerful, worldwide grid

• Questions?