

CNGS Status: Neutrino Beam to OPERA

Edda Gschwendtner, CERN, Geneva

- CNGS Commissioning and Physics Operation 2006
- Perspectives 2007
- Maximum Possible Number of Protons on CNGS

CNGS Project

CNGS (CERN Neutrino Gran Sasso)

- → A long base-line neutrino beam facility (732km)
- → send v_{μ} beam produced at CERN
- → detect v_{τ} appearance in OPERA experiment at Gran Sasso

\rightarrow direct proof of $v_{\mu} - v_{\tau}$ oscillation (appearance experiment)

v_{τ} – Appearance Experiment

- **Beam optimization:**
 - Intensity: as high as possible
 - Neutrino energy: matched for ν_µ-ν_τ appearance experiments

Product of

- 1. Oscillation probability $v_{\mu} v_{\tau}$
- 2. Production cross-section v_{τ} with matter
- 3. ν_µ-fluence(E)
 + Detection efficiency in the experiment

 $p + C \rightarrow (\text{interactions}) \rightarrow \pi^+, \ K^+ \rightarrow (\text{decay in flight}) \rightarrow \mu^+ + \nu_{\mu}$

CNGS Target

proton beam focus

TBID (Target Beam Instrumentation Downstream)

Secondary emission monitor, 12 μ m Ti foils, diameter = 145mm

- Measures all charged particles downstream the target
 - Check efficiency of particle production in the target

A 2751 Ho	rn	
	cycle ti	se ms dise 2nd beam pulse 240 4280 me [ms] HORN REFL.
		SystemSystem150180
	Pulse duration ms	130 180 6.5 9.8
Installation of the hours in the target shamber	Water flow for delta l/min T=5C	50 50
Installation of the horn in the target chamber	Pressure bar	1.2 1.2

Beam parameters	Nominal CNGS beam	
Nominal energy [GeV]	400	~500kW beam power
Normalized emittance [µm]	H=12 V=7	
Emittance [µm]	H=0.028 V= 0.016	
Momentum spread Δp/p	0.07 % +/- 20%	
# extractions per cycle	2 separated by 50 ms	
Batch length [µs]	10.5	
# of bunches per pulse	2100	
Intensity per extraction [10 ¹³ p]	2.4	
Bunch length [ns] (4σ)	2	
Bunch spacing [ns]	5	
Beta at focus [m]	hor.: 10 ; vert.: 20	FE FE
Beam sizes at 400 GeV [mm]	0.5 mm	
Beam divergence [mrad]	hor.: 0.05; vert.: 0.03	
Expected beam performance: 4.5	x 10 ¹⁹ protons/year on target	=6 s

	Date	Extractions	Protons
Commissioning W28	10 – 14 Jul. 2006	300	1.3 E14
Commissioning W30	31 Jul. – 4 Aug. 2006	500	2.4 E14
Commissioning W33	14 – 18 Aug. 2006	1300	6.5 E15
Physics Operation I	18 – 30 Aug. 2006	53000	7.8 E17
Low Intensity Tests	12 – 13 Oct. 2006	2500	9.5 E15
Physics Operation II	26 – 27 Oct. 2006	8300	5.8 E16

- Maximum proton intensity reached in 2006: 3.5 ·10¹³/cycle at 400GeV
- While setting up high intensities for all 3 cycles, reflector leak appeared

FIRST SHOT 11 July 2006

1st shot down proton beam line: beam is already well centered on screens

8 profile monitors (BTVG): Optical Transition Radiation screens:

- 75 µm carbon
- 12 µm titanium screens

Edda Gschwendtner, CERN

Average of two extractions. 1E13 protons per batch

\rightarrow Beam position stability onto the target over the 3 first days: $\sim 50 \ \mu m \ rms$

Muon pit 2: sensitive to beam vs. target alignment

- Commissioning was very successful
 - → Detailed hardware commissioning
 - → 'Dry runs'
 - Allowed early debugging of all systems
- Smooth start-up
 - → Beam interlock system very good
 - → Extraction channel well tuned
 - → Beam well centered along beam line
 - Beam position stability: 50 µm rms
 - Beam spot at target: 0.5 mm rms.
 - → Centering of beam vs. target and horn important
 - → Muon monitors: very sensitive to any beam changes
 - Used as on-line feedback for quality control of neutrino beam.

Radiation Protection constraints to CNGS operation

- Cool down limit for starting access into CNGS
 > 2hr + 4hr (i.e. 4 hr ventilation on)
- RP inspection mandatory before any access is granted:
 Takes ~1/2 day (surveys, taking samples, etc.)
- Dose planning mandatory for any interventions

Perspectives for 2007

- OPERA has asked for 1 E19 pot at the end of the run 2007.
 - → Subject to experimental status.
 - → To be decided in the next SPSC.
- Meanwhile: repair work for the CNGS horn and reflector is ongoing.

CNGS design values

- CNGS committed to deliver 4.5 E19 pot/year for 5 years
- I=3.5 E13 per batch, I=7E13 per cycle
 - Assumed in the design phase for the equipment for which the instantaneous intensity is important (target)
- 1.38 E20 pot/year
 - Assumed (unrealistic scenario) for the design of equipment, for which long term effects are relevant (equipment exchange)

Intensity Limitations from the CNGS Facility

Intensity limitation	Protons per batch	Protons per cycle	POT per year
Radiation Protection calculation and optimization	3.5E13		Soil/concrete activation: 4.5E19 Air/water activation: 7.6E19
Target design	3.5E13	1.4E14	2E20
Horn design	3.5E13	7E13	1.38E20
Shielding, Decay Tube, Hadron stop design			1.38E20
Kicker system	3.5E13	1 E 14	
Instrumentation	3.5E13		

- Intensity limitations from the injectors
 - → Intensity limitations from accelerator chain injectors and for various scenarios are being evaluated. More results for end March 2007.

Spare Slides

For CNGS performance, the main issues are

→ the geodesic alignment wrt. Gran Sasso

Examples:	<u>effect on V_T cc events</u>
horn off axis by 6mm	- < 3%
reflector off axis by 30mm	
proton beam on target off axis by 1mm	< 3%
CNGS facility misaligned	< 3%
by 0.5mrad (beam 360m	off)

the beam must hit the target very accurately horn and reflector tables NOT motorized

The CNGS Reflector

Leaking Drain Connection

Edda Gschwendtner, CERN

CNGS Reflector Leak Review Meeting with AB, TS and RP experts, held on 29 Nov 06

Tests

- Mounting first prototype on spare horn
- Perform tests with spare horn in BA7
 - → Electrical tests
 - → Vibration measurements on old drain connection
 - → Vibration measurements on new drain connection

Repair

- Radiation Issues
 - → Careful dose planning needed
- **Repair is not trivial**

